m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

97 lines
2.9 KiB

7 months ago
  1. from functools import singledispatch
  2. from sympy.external import import_module
  3. from sympy.stats.crv_types import BetaDistribution, CauchyDistribution, ChiSquaredDistribution, ExponentialDistribution, \
  4. GammaDistribution, LogNormalDistribution, NormalDistribution, ParetoDistribution, UniformDistribution, \
  5. GaussianInverseDistribution
  6. from sympy.stats.drv_types import PoissonDistribution, GeometricDistribution, NegativeBinomialDistribution
  7. from sympy.stats.frv_types import BinomialDistribution, BernoulliDistribution
  8. pymc3 = import_module('pymc3')
  9. @singledispatch
  10. def do_sample_pymc3(dist):
  11. return None
  12. # CRV:
  13. @do_sample_pymc3.register(BetaDistribution)
  14. def _(dist: BetaDistribution):
  15. return pymc3.Beta('X', alpha=float(dist.alpha), beta=float(dist.beta))
  16. @do_sample_pymc3.register(CauchyDistribution)
  17. def _(dist: CauchyDistribution):
  18. return pymc3.Cauchy('X', alpha=float(dist.x0), beta=float(dist.gamma))
  19. @do_sample_pymc3.register(ChiSquaredDistribution)
  20. def _(dist: ChiSquaredDistribution):
  21. return pymc3.ChiSquared('X', nu=float(dist.k))
  22. @do_sample_pymc3.register(ExponentialDistribution)
  23. def _(dist: ExponentialDistribution):
  24. return pymc3.Exponential('X', lam=float(dist.rate))
  25. @do_sample_pymc3.register(GammaDistribution)
  26. def _(dist: GammaDistribution):
  27. return pymc3.Gamma('X', alpha=float(dist.k), beta=1 / float(dist.theta))
  28. @do_sample_pymc3.register(LogNormalDistribution)
  29. def _(dist: LogNormalDistribution):
  30. return pymc3.Lognormal('X', mu=float(dist.mean), sigma=float(dist.std))
  31. @do_sample_pymc3.register(NormalDistribution)
  32. def _(dist: NormalDistribution):
  33. return pymc3.Normal('X', float(dist.mean), float(dist.std))
  34. @do_sample_pymc3.register(GaussianInverseDistribution)
  35. def _(dist: GaussianInverseDistribution):
  36. return pymc3.Wald('X', mu=float(dist.mean), lam=float(dist.shape))
  37. @do_sample_pymc3.register(ParetoDistribution)
  38. def _(dist: ParetoDistribution):
  39. return pymc3.Pareto('X', alpha=float(dist.alpha), m=float(dist.xm))
  40. @do_sample_pymc3.register(UniformDistribution)
  41. def _(dist: UniformDistribution):
  42. return pymc3.Uniform('X', lower=float(dist.left), upper=float(dist.right))
  43. # DRV:
  44. @do_sample_pymc3.register(GeometricDistribution)
  45. def _(dist: GeometricDistribution):
  46. return pymc3.Geometric('X', p=float(dist.p))
  47. @do_sample_pymc3.register(NegativeBinomialDistribution)
  48. def _(dist: NegativeBinomialDistribution):
  49. return pymc3.NegativeBinomial('X', mu=float((dist.p * dist.r) / (1 - dist.p)),
  50. alpha=float(dist.r))
  51. @do_sample_pymc3.register(PoissonDistribution)
  52. def _(dist: PoissonDistribution):
  53. return pymc3.Poisson('X', mu=float(dist.lamda))
  54. # FRV:
  55. @do_sample_pymc3.register(BernoulliDistribution)
  56. def _(dist: BernoulliDistribution):
  57. return pymc3.Bernoulli('X', p=float(dist.p))
  58. @do_sample_pymc3.register(BinomialDistribution)
  59. def _(dist: BinomialDistribution):
  60. return pymc3.Binomial('X', n=int(dist.n), p=float(dist.p))