m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

341 lines
24 KiB

6 months ago
  1. import random
  2. from sympy.combinatorics import Permutation
  3. from sympy.combinatorics.permutations import _af_invert
  4. from sympy.testing.pytest import raises
  5. from sympy.core.function import diff
  6. from sympy.core.symbol import symbols
  7. from sympy.functions.elementary.complexes import (adjoint, conjugate, transpose)
  8. from sympy.functions.elementary.exponential import (exp, log)
  9. from sympy.functions.elementary.trigonometric import (cos, sin)
  10. from sympy.tensor.array import Array, ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray
  11. from sympy.tensor.array.arrayop import tensorproduct, tensorcontraction, derive_by_array, permutedims, Flatten, \
  12. tensordiagonal
  13. def test_import_NDimArray():
  14. from sympy.tensor.array import NDimArray
  15. del NDimArray
  16. def test_tensorproduct():
  17. x,y,z,t = symbols('x y z t')
  18. from sympy.abc import a,b,c,d
  19. assert tensorproduct() == 1
  20. assert tensorproduct([x]) == Array([x])
  21. assert tensorproduct([x], [y]) == Array([[x*y]])
  22. assert tensorproduct([x], [y], [z]) == Array([[[x*y*z]]])
  23. assert tensorproduct([x], [y], [z], [t]) == Array([[[[x*y*z*t]]]])
  24. assert tensorproduct(x) == x
  25. assert tensorproduct(x, y) == x*y
  26. assert tensorproduct(x, y, z) == x*y*z
  27. assert tensorproduct(x, y, z, t) == x*y*z*t
  28. for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
  29. A = ArrayType([x, y])
  30. B = ArrayType([1, 2, 3])
  31. C = ArrayType([a, b, c, d])
  32. assert tensorproduct(A, B, C) == ArrayType([[[a*x, b*x, c*x, d*x], [2*a*x, 2*b*x, 2*c*x, 2*d*x], [3*a*x, 3*b*x, 3*c*x, 3*d*x]],
  33. [[a*y, b*y, c*y, d*y], [2*a*y, 2*b*y, 2*c*y, 2*d*y], [3*a*y, 3*b*y, 3*c*y, 3*d*y]]])
  34. assert tensorproduct([x, y], [1, 2, 3]) == tensorproduct(A, B)
  35. assert tensorproduct(A, 2) == ArrayType([2*x, 2*y])
  36. assert tensorproduct(A, [2]) == ArrayType([[2*x], [2*y]])
  37. assert tensorproduct([2], A) == ArrayType([[2*x, 2*y]])
  38. assert tensorproduct(a, A) == ArrayType([a*x, a*y])
  39. assert tensorproduct(a, A, B) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]])
  40. assert tensorproduct(A, B, a) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]])
  41. assert tensorproduct(B, a, A) == ArrayType([[a*x, a*y], [2*a*x, 2*a*y], [3*a*x, 3*a*y]])
  42. # tests for large scale sparse array
  43. for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
  44. a = SparseArrayType({1:2, 3:4},(1000, 2000))
  45. b = SparseArrayType({1:2, 3:4},(1000, 2000))
  46. assert tensorproduct(a, b) == ImmutableSparseNDimArray({2000001: 4, 2000003: 8, 6000001: 8, 6000003: 16}, (1000, 2000, 1000, 2000))
  47. def test_tensorcontraction():
  48. from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x
  49. B = Array(range(18), (2, 3, 3))
  50. assert tensorcontraction(B, (1, 2)) == Array([12, 39])
  51. C1 = Array([a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x], (2, 3, 2, 2))
  52. assert tensorcontraction(C1, (0, 2)) == Array([[a + o, b + p], [e + s, f + t], [i + w, j + x]])
  53. assert tensorcontraction(C1, (0, 2, 3)) == Array([a + p, e + t, i + x])
  54. assert tensorcontraction(C1, (2, 3)) == Array([[a + d, e + h, i + l], [m + p, q + t, u + x]])
  55. def test_derivative_by_array():
  56. from sympy.abc import i, j, t, x, y, z
  57. bexpr = x*y**2*exp(z)*log(t)
  58. sexpr = sin(bexpr)
  59. cexpr = cos(bexpr)
  60. a = Array([sexpr])
  61. assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
  62. assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
  63. assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])
  64. assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
  65. assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
  66. assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
  67. assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
  68. [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
  69. assert diff(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
  70. assert diff(sexpr, Array([x, y, z])) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
  71. assert diff(a, Array([x, y, z])) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])
  72. assert diff(sexpr, Array([[x, y], [z, t]])) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
  73. assert diff(a, Array([[x, y], [z, t]])) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
  74. assert diff(Array([[x, y], [z, t]]), Array([x, y])) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
  75. assert diff(Array([[x, y], [z, t]]), Array([[x, y], [z, t]])) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
  76. [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
  77. # test for large scale sparse array
  78. for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
  79. b = MutableSparseNDimArray({0:i, 1:j}, (10000, 20000))
  80. assert derive_by_array(b, i) == ImmutableSparseNDimArray({0: 1}, (10000, 20000))
  81. assert derive_by_array(b, (i, j)) == ImmutableSparseNDimArray({0: 1, 200000001: 1}, (2, 10000, 20000))
  82. #https://github.com/sympy/sympy/issues/20655
  83. U = Array([x, y, z])
  84. E = 2
  85. assert derive_by_array(E, U) == ImmutableDenseNDimArray([0, 0, 0])
  86. def test_issue_emerged_while_discussing_10972():
  87. ua = Array([-1,0])
  88. Fa = Array([[0, 1], [-1, 0]])
  89. po = tensorproduct(Fa, ua, Fa, ua)
  90. assert tensorcontraction(po, (1, 2), (4, 5)) == Array([[0, 0], [0, 1]])
  91. sa = symbols('a0:144')
  92. po = Array(sa, [2, 2, 3, 3, 2, 2])
  93. assert tensorcontraction(po, (0, 1), (2, 3), (4, 5)) == sa[0] + sa[108] + sa[111] + sa[124] + sa[127] + sa[140] + sa[143] + sa[16] + sa[19] + sa[3] + sa[32] + sa[35]
  94. assert tensorcontraction(po, (0, 1, 4, 5), (2, 3)) == sa[0] + sa[111] + sa[127] + sa[143] + sa[16] + sa[32]
  95. assert tensorcontraction(po, (0, 1), (4, 5)) == Array([[sa[0] + sa[108] + sa[111] + sa[3], sa[112] + sa[115] + sa[4] + sa[7],
  96. sa[11] + sa[116] + sa[119] + sa[8]], [sa[12] + sa[120] + sa[123] + sa[15],
  97. sa[124] + sa[127] + sa[16] + sa[19], sa[128] + sa[131] + sa[20] + sa[23]],
  98. [sa[132] + sa[135] + sa[24] + sa[27], sa[136] + sa[139] + sa[28] + sa[31],
  99. sa[140] + sa[143] + sa[32] + sa[35]]])
  100. assert tensorcontraction(po, (0, 1), (2, 3)) == Array([[sa[0] + sa[108] + sa[124] + sa[140] + sa[16] + sa[32], sa[1] + sa[109] + sa[125] + sa[141] + sa[17] + sa[33]],
  101. [sa[110] + sa[126] + sa[142] + sa[18] + sa[2] + sa[34], sa[111] + sa[127] + sa[143] + sa[19] + sa[3] + sa[35]]])
  102. def test_array_permutedims():
  103. sa = symbols('a0:144')
  104. for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
  105. m1 = ArrayType(sa[:6], (2, 3))
  106. assert permutedims(m1, (1, 0)) == transpose(m1)
  107. assert m1.tomatrix().T == permutedims(m1, (1, 0)).tomatrix()
  108. assert m1.tomatrix().T == transpose(m1).tomatrix()
  109. assert m1.tomatrix().C == conjugate(m1).tomatrix()
  110. assert m1.tomatrix().H == adjoint(m1).tomatrix()
  111. assert m1.tomatrix().T == m1.transpose().tomatrix()
  112. assert m1.tomatrix().C == m1.conjugate().tomatrix()
  113. assert m1.tomatrix().H == m1.adjoint().tomatrix()
  114. raises(ValueError, lambda: permutedims(m1, (0,)))
  115. raises(ValueError, lambda: permutedims(m1, (0, 0)))
  116. raises(ValueError, lambda: permutedims(m1, (1, 2, 0)))
  117. # Some tests with random arrays:
  118. dims = 6
  119. shape = [random.randint(1,5) for i in range(dims)]
  120. elems = [random.random() for i in range(tensorproduct(*shape))]
  121. ra = ArrayType(elems, shape)
  122. perm = list(range(dims))
  123. # Randomize the permutation:
  124. random.shuffle(perm)
  125. # Test inverse permutation:
  126. assert permutedims(permutedims(ra, perm), _af_invert(perm)) == ra
  127. # Test that permuted shape corresponds to action by `Permutation`:
  128. assert permutedims(ra, perm).shape == tuple(Permutation(perm)(shape))
  129. z = ArrayType.zeros(4,5,6,7)
  130. assert permutedims(z, (2, 3, 1, 0)).shape == (6, 7, 5, 4)
  131. assert permutedims(z, [2, 3, 1, 0]).shape == (6, 7, 5, 4)
  132. assert permutedims(z, Permutation([2, 3, 1, 0])).shape == (6, 7, 5, 4)
  133. po = ArrayType(sa, [2, 2, 3, 3, 2, 2])
  134. raises(ValueError, lambda: permutedims(po, (1, 1)))
  135. raises(ValueError, lambda: po.transpose())
  136. raises(ValueError, lambda: po.adjoint())
  137. assert permutedims(po, reversed(range(po.rank()))) == ArrayType(
  138. [[[[[[sa[0], sa[72]], [sa[36], sa[108]]], [[sa[12], sa[84]], [sa[48], sa[120]]], [[sa[24],
  139. sa[96]], [sa[60], sa[132]]]],
  140. [[[sa[4], sa[76]], [sa[40], sa[112]]], [[sa[16],
  141. sa[88]], [sa[52], sa[124]]],
  142. [[sa[28], sa[100]], [sa[64], sa[136]]]],
  143. [[[sa[8],
  144. sa[80]], [sa[44], sa[116]]], [[sa[20], sa[92]], [sa[56], sa[128]]], [[sa[32],
  145. sa[104]], [sa[68], sa[140]]]]],
  146. [[[[sa[2], sa[74]], [sa[38], sa[110]]], [[sa[14],
  147. sa[86]], [sa[50], sa[122]]], [[sa[26], sa[98]], [sa[62], sa[134]]]],
  148. [[[sa[6],
  149. sa[78]], [sa[42], sa[114]]], [[sa[18], sa[90]], [sa[54], sa[126]]], [[sa[30],
  150. sa[102]], [sa[66], sa[138]]]],
  151. [[[sa[10], sa[82]], [sa[46], sa[118]]], [[sa[22],
  152. sa[94]], [sa[58], sa[130]]],
  153. [[sa[34], sa[106]], [sa[70], sa[142]]]]]],
  154. [[[[[sa[1],
  155. sa[73]], [sa[37], sa[109]]], [[sa[13], sa[85]], [sa[49], sa[121]]], [[sa[25],
  156. sa[97]], [sa[61], sa[133]]]],
  157. [[[sa[5], sa[77]], [sa[41], sa[113]]], [[sa[17],
  158. sa[89]], [sa[53], sa[125]]],
  159. [[sa[29], sa[101]], [sa[65], sa[137]]]],
  160. [[[sa[9],
  161. sa[81]], [sa[45], sa[117]]], [[sa[21], sa[93]], [sa[57], sa[129]]], [[sa[33],
  162. sa[105]], [sa[69], sa[141]]]]],
  163. [[[[sa[3], sa[75]], [sa[39], sa[111]]], [[sa[15],
  164. sa[87]], [sa[51], sa[123]]], [[sa[27], sa[99]], [sa[63], sa[135]]]],
  165. [[[sa[7],
  166. sa[79]], [sa[43], sa[115]]], [[sa[19], sa[91]], [sa[55], sa[127]]], [[sa[31],
  167. sa[103]], [sa[67], sa[139]]]],
  168. [[[sa[11], sa[83]], [sa[47], sa[119]]], [[sa[23],
  169. sa[95]], [sa[59], sa[131]]],
  170. [[sa[35], sa[107]], [sa[71], sa[143]]]]]]])
  171. assert permutedims(po, (1, 0, 2, 3, 4, 5)) == ArrayType(
  172. [[[[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10],
  173. sa[11]]]],
  174. [[[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18],
  175. sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]]],
  176. [[[sa[24], sa[25]], [sa[26],
  177. sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34],
  178. sa[35]]]]],
  179. [[[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78],
  180. sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]]],
  181. [[[sa[84], sa[85]], [sa[86],
  182. sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94],
  183. sa[95]]]],
  184. [[[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102],
  185. sa[103]]],
  186. [[sa[104], sa[105]], [sa[106], sa[107]]]]]], [[[[[sa[36], sa[37]], [sa[38],
  187. sa[39]]],
  188. [[sa[40], sa[41]], [sa[42], sa[43]]],
  189. [[sa[44], sa[45]], [sa[46],
  190. sa[47]]]],
  191. [[[sa[48], sa[49]], [sa[50], sa[51]]],
  192. [[sa[52], sa[53]], [sa[54],
  193. sa[55]]],
  194. [[sa[56], sa[57]], [sa[58], sa[59]]]],
  195. [[[sa[60], sa[61]], [sa[62],
  196. sa[63]]],
  197. [[sa[64], sa[65]], [sa[66], sa[67]]],
  198. [[sa[68], sa[69]], [sa[70],
  199. sa[71]]]]], [
  200. [[[sa[108], sa[109]], [sa[110], sa[111]]],
  201. [[sa[112], sa[113]], [sa[114],
  202. sa[115]]],
  203. [[sa[116], sa[117]], [sa[118], sa[119]]]],
  204. [[[sa[120], sa[121]], [sa[122],
  205. sa[123]]],
  206. [[sa[124], sa[125]], [sa[126], sa[127]]],
  207. [[sa[128], sa[129]], [sa[130],
  208. sa[131]]]],
  209. [[[sa[132], sa[133]], [sa[134], sa[135]]],
  210. [[sa[136], sa[137]], [sa[138],
  211. sa[139]]],
  212. [[sa[140], sa[141]], [sa[142], sa[143]]]]]]])
  213. assert permutedims(po, (0, 2, 1, 4, 3, 5)) == ArrayType(
  214. [[[[[[sa[0], sa[1]], [sa[4], sa[5]], [sa[8], sa[9]]], [[sa[2], sa[3]], [sa[6], sa[7]], [sa[10],
  215. sa[11]]]],
  216. [[[sa[36], sa[37]], [sa[40], sa[41]], [sa[44], sa[45]]], [[sa[38],
  217. sa[39]], [sa[42], sa[43]], [sa[46], sa[47]]]]],
  218. [[[[sa[12], sa[13]], [sa[16],
  219. sa[17]], [sa[20], sa[21]]], [[sa[14], sa[15]], [sa[18], sa[19]], [sa[22],
  220. sa[23]]]],
  221. [[[sa[48], sa[49]], [sa[52], sa[53]], [sa[56], sa[57]]], [[sa[50],
  222. sa[51]], [sa[54], sa[55]], [sa[58], sa[59]]]]],
  223. [[[[sa[24], sa[25]], [sa[28],
  224. sa[29]], [sa[32], sa[33]]], [[sa[26], sa[27]], [sa[30], sa[31]], [sa[34],
  225. sa[35]]]],
  226. [[[sa[60], sa[61]], [sa[64], sa[65]], [sa[68], sa[69]]], [[sa[62],
  227. sa[63]], [sa[66], sa[67]], [sa[70], sa[71]]]]]],
  228. [[[[[sa[72], sa[73]], [sa[76],
  229. sa[77]], [sa[80], sa[81]]], [[sa[74], sa[75]], [sa[78], sa[79]], [sa[82],
  230. sa[83]]]],
  231. [[[sa[108], sa[109]], [sa[112], sa[113]], [sa[116], sa[117]]], [[sa[110],
  232. sa[111]], [sa[114], sa[115]],
  233. [sa[118], sa[119]]]]],
  234. [[[[sa[84], sa[85]], [sa[88],
  235. sa[89]], [sa[92], sa[93]]], [[sa[86], sa[87]], [sa[90], sa[91]], [sa[94],
  236. sa[95]]]],
  237. [[[sa[120], sa[121]], [sa[124], sa[125]], [sa[128], sa[129]]], [[sa[122],
  238. sa[123]], [sa[126], sa[127]],
  239. [sa[130], sa[131]]]]],
  240. [[[[sa[96], sa[97]], [sa[100],
  241. sa[101]], [sa[104], sa[105]]], [[sa[98], sa[99]], [sa[102], sa[103]], [sa[106],
  242. sa[107]]]],
  243. [[[sa[132], sa[133]], [sa[136], sa[137]], [sa[140], sa[141]]], [[sa[134],
  244. sa[135]], [sa[138], sa[139]],
  245. [sa[142], sa[143]]]]]]])
  246. po2 = po.reshape(4, 9, 2, 2)
  247. assert po2 == ArrayType([[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]], [[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]], [[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]], [[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]], [[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]], [[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]], [[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]], [[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]], [[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]], [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]], [[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]], [[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]])
  248. assert permutedims(po2, (3, 2, 0, 1)) == ArrayType([[[[sa[0], sa[4], sa[8], sa[12], sa[16], sa[20], sa[24], sa[28], sa[32]], [sa[36], sa[40], sa[44], sa[48], sa[52], sa[56], sa[60], sa[64], sa[68]], [sa[72], sa[76], sa[80], sa[84], sa[88], sa[92], sa[96], sa[100], sa[104]], [sa[108], sa[112], sa[116], sa[120], sa[124], sa[128], sa[132], sa[136], sa[140]]], [[sa[2], sa[6], sa[10], sa[14], sa[18], sa[22], sa[26], sa[30], sa[34]], [sa[38], sa[42], sa[46], sa[50], sa[54], sa[58], sa[62], sa[66], sa[70]], [sa[74], sa[78], sa[82], sa[86], sa[90], sa[94], sa[98], sa[102], sa[106]], [sa[110], sa[114], sa[118], sa[122], sa[126], sa[130], sa[134], sa[138], sa[142]]]], [[[sa[1], sa[5], sa[9], sa[13], sa[17], sa[21], sa[25], sa[29], sa[33]], [sa[37], sa[41], sa[45], sa[49], sa[53], sa[57], sa[61], sa[65], sa[69]], [sa[73], sa[77], sa[81], sa[85], sa[89], sa[93], sa[97], sa[101], sa[105]], [sa[109], sa[113], sa[117], sa[121], sa[125], sa[129], sa[133], sa[137], sa[141]]], [[sa[3], sa[7], sa[11], sa[15], sa[19], sa[23], sa[27], sa[31], sa[35]], [sa[39], sa[43], sa[47], sa[51], sa[55], sa[59], sa[63], sa[67], sa[71]], [sa[75], sa[79], sa[83], sa[87], sa[91], sa[95], sa[99], sa[103], sa[107]], [sa[111], sa[115], sa[119], sa[123], sa[127], sa[131], sa[135], sa[139], sa[143]]]]])
  249. # test for large scale sparse array
  250. for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]:
  251. A = SparseArrayType({1:1, 10000:2}, (10000, 20000, 10000))
  252. assert permutedims(A, (0, 1, 2)) == A
  253. assert permutedims(A, (1, 0, 2)) == SparseArrayType({1: 1, 100000000: 2}, (20000, 10000, 10000))
  254. B = SparseArrayType({1:1, 20000:2}, (10000, 20000))
  255. assert B.transpose() == SparseArrayType({10000: 1, 1: 2}, (20000, 10000))
  256. def test_flatten():
  257. from sympy.matrices.dense import Matrix
  258. for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray, Matrix]:
  259. A = ArrayType(range(24)).reshape(4, 6)
  260. assert [i for i in Flatten(A)] == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
  261. for i, v in enumerate(Flatten(A)):
  262. assert i == v
  263. def test_tensordiagonal():
  264. from sympy.matrices.dense import eye
  265. expr = Array(range(9)).reshape(3, 3)
  266. raises(ValueError, lambda: tensordiagonal(expr, [0], [1]))
  267. raises(ValueError, lambda: tensordiagonal(expr, [0, 0]))
  268. assert tensordiagonal(eye(3), [0, 1]) == Array([1, 1, 1])
  269. assert tensordiagonal(expr, [0, 1]) == Array([0, 4, 8])
  270. x, y, z = symbols("x y z")
  271. expr2 = tensorproduct([x, y, z], expr)
  272. assert tensordiagonal(expr2, [1, 2]) == Array([[0, 4*x, 8*x], [0, 4*y, 8*y], [0, 4*z, 8*z]])
  273. assert tensordiagonal(expr2, [0, 1]) == Array([[0, 3*y, 6*z], [x, 4*y, 7*z], [2*x, 5*y, 8*z]])
  274. assert tensordiagonal(expr2, [0, 1, 2]) == Array([0, 4*y, 8*z])
  275. # assert tensordiagonal(expr2, [0]) == permutedims(expr2, [1, 2, 0])
  276. # assert tensordiagonal(expr2, [1]) == permutedims(expr2, [0, 2, 1])
  277. # assert tensordiagonal(expr2, [2]) == expr2
  278. # assert tensordiagonal(expr2, [1], [2]) == expr2
  279. # assert tensordiagonal(expr2, [0], [1]) == permutedims(expr2, [2, 0, 1])
  280. a, b, c, X, Y, Z = symbols("a b c X Y Z")
  281. expr3 = tensorproduct([x, y, z], [1, 2, 3], [a, b, c], [X, Y, Z])
  282. assert tensordiagonal(expr3, [0, 1, 2, 3]) == Array([x*a*X, 2*y*b*Y, 3*z*c*Z])
  283. assert tensordiagonal(expr3, [0, 1], [2, 3]) == tensorproduct([x, 2*y, 3*z], [a*X, b*Y, c*Z])
  284. # assert tensordiagonal(expr3, [0], [1, 2], [3]) == tensorproduct([x, y, z], [a, 2*b, 3*c], [X, Y, Z])
  285. assert tensordiagonal(tensordiagonal(expr3, [2, 3]), [0, 1]) == tensorproduct([a*X, b*Y, c*Z], [x, 2*y, 3*z])
  286. raises(ValueError, lambda: tensordiagonal([[1, 2, 3], [4, 5, 6]], [0, 1]))
  287. raises(ValueError, lambda: tensordiagonal(expr3.reshape(3, 3, 9), [1, 2]))