m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1980 lines
71 KiB

6 months ago
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.function import expand
  3. from sympy.core.numbers import Integer
  4. from sympy.matrices.dense import (Matrix, eye)
  5. from sympy.tensor.indexed import Indexed
  6. from sympy.combinatorics import Permutation
  7. from sympy.core import S, Rational, Symbol, Basic, Add
  8. from sympy.core.containers import Tuple
  9. from sympy.core.symbol import symbols
  10. from sympy.functions.elementary.miscellaneous import sqrt
  11. from sympy.tensor.array import Array
  12. from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, \
  13. get_symmetric_group_sgs, TensorIndex, tensor_mul, TensAdd, \
  14. riemann_cyclic_replace, riemann_cyclic, TensMul, tensor_heads, \
  15. TensorManager, TensExpr, TensorHead, canon_bp, \
  16. tensorhead, tensorsymmetry, TensorType, substitute_indices
  17. from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
  18. from sympy.matrices import diag
  19. def _is_equal(arg1, arg2):
  20. if isinstance(arg1, TensExpr):
  21. return arg1.equals(arg2)
  22. elif isinstance(arg2, TensExpr):
  23. return arg2.equals(arg1)
  24. return arg1 == arg2
  25. #################### Tests from tensor_can.py #######################
  26. def test_canonicalize_no_slot_sym():
  27. # A_d0 * B^d0; T_c = A^d0*B_d0
  28. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  29. a, b, d0, d1 = tensor_indices('a,b,d0,d1', Lorentz)
  30. A, B = tensor_heads('A,B', [Lorentz], TensorSymmetry.no_symmetry(1))
  31. t = A(-d0)*B(d0)
  32. tc = t.canon_bp()
  33. assert str(tc) == 'A(L_0)*B(-L_0)'
  34. # A^a * B^b; T_c = T
  35. t = A(a)*B(b)
  36. tc = t.canon_bp()
  37. assert tc == t
  38. # B^b * A^a
  39. t1 = B(b)*A(a)
  40. tc = t1.canon_bp()
  41. assert str(tc) == 'A(a)*B(b)'
  42. # A symmetric
  43. # A^{b}_{d0}*A^{d0, a}; T_c = A^{a d0}*A{b}_{d0}
  44. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  45. t = A(b, -d0)*A(d0, a)
  46. tc = t.canon_bp()
  47. assert str(tc) == 'A(a, L_0)*A(b, -L_0)'
  48. # A^{d1}_{d0}*B^d0*C_d1
  49. # T_c = A^{d0 d1}*B_d0*C_d1
  50. B, C = tensor_heads('B,C', [Lorentz], TensorSymmetry.no_symmetry(1))
  51. t = A(d1, -d0)*B(d0)*C(-d1)
  52. tc = t.canon_bp()
  53. assert str(tc) == 'A(L_0, L_1)*B(-L_0)*C(-L_1)'
  54. # A without symmetry
  55. # A^{d1}_{d0}*B^d0*C_d1 ord=[d0,-d0,d1,-d1]; g = [2,1,0,3,4,5]
  56. # T_c = A^{d0 d1}*B_d1*C_d0; can = [0,2,3,1,4,5]
  57. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  58. t = A(d1, -d0)*B(d0)*C(-d1)
  59. tc = t.canon_bp()
  60. assert str(tc) == 'A(L_0, L_1)*B(-L_1)*C(-L_0)'
  61. # A, B without symmetry
  62. # A^{d1}_{d0}*B_{d1}^{d0}
  63. # T_c = A^{d0 d1}*B_{d0 d1}
  64. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  65. t = A(d1, -d0)*B(-d1, d0)
  66. tc = t.canon_bp()
  67. assert str(tc) == 'A(L_0, L_1)*B(-L_0, -L_1)'
  68. # A_{d0}^{d1}*B_{d1}^{d0}
  69. # T_c = A^{d0 d1}*B_{d1 d0}
  70. t = A(-d0, d1)*B(-d1, d0)
  71. tc = t.canon_bp()
  72. assert str(tc) == 'A(L_0, L_1)*B(-L_1, -L_0)'
  73. # A, B, C without symmetry
  74. # A^{d1 d0}*B_{a d0}*C_{d1 b}
  75. # T_c=A^{d0 d1}*B_{a d1}*C_{d0 b}
  76. C = TensorHead('C', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  77. t = A(d1, d0)*B(-a, -d0)*C(-d1, -b)
  78. tc = t.canon_bp()
  79. assert str(tc) == 'A(L_0, L_1)*B(-a, -L_1)*C(-L_0, -b)'
  80. # A symmetric, B and C without symmetry
  81. # A^{d1 d0}*B_{a d0}*C_{d1 b}
  82. # T_c = A^{d0 d1}*B_{a d0}*C_{d1 b}
  83. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  84. t = A(d1, d0)*B(-a, -d0)*C(-d1, -b)
  85. tc = t.canon_bp()
  86. assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-L_1, -b)'
  87. # A and C symmetric, B without symmetry
  88. # A^{d1 d0}*B_{a d0}*C_{d1 b} ord=[a,b,d0,-d0,d1,-d1]
  89. # T_c = A^{d0 d1}*B_{a d0}*C_{b d1}
  90. C = TensorHead('C', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  91. t = A(d1, d0)*B(-a, -d0)*C(-d1, -b)
  92. tc = t.canon_bp()
  93. assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-b, -L_1)'
  94. def test_canonicalize_no_dummies():
  95. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  96. a, b, c, d = tensor_indices('a, b, c, d', Lorentz)
  97. # A commuting
  98. # A^c A^b A^a
  99. # T_c = A^a A^b A^c
  100. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1))
  101. t = A(c)*A(b)*A(a)
  102. tc = t.canon_bp()
  103. assert str(tc) == 'A(a)*A(b)*A(c)'
  104. # A anticommuting
  105. # A^c A^b A^a
  106. # T_c = -A^a A^b A^c
  107. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1)
  108. t = A(c)*A(b)*A(a)
  109. tc = t.canon_bp()
  110. assert str(tc) == '-A(a)*A(b)*A(c)'
  111. # A commuting and symmetric
  112. # A^{b,d}*A^{c,a}
  113. # T_c = A^{a c}*A^{b d}
  114. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  115. t = A(b, d)*A(c, a)
  116. tc = t.canon_bp()
  117. assert str(tc) == 'A(a, c)*A(b, d)'
  118. # A anticommuting and symmetric
  119. # A^{b,d}*A^{c,a}
  120. # T_c = -A^{a c}*A^{b d}
  121. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2), 1)
  122. t = A(b, d)*A(c, a)
  123. tc = t.canon_bp()
  124. assert str(tc) == '-A(a, c)*A(b, d)'
  125. # A^{c,a}*A^{b,d}
  126. # T_c = A^{a c}*A^{b d}
  127. t = A(c, a)*A(b, d)
  128. tc = t.canon_bp()
  129. assert str(tc) == 'A(a, c)*A(b, d)'
  130. def test_tensorhead_construction_without_symmetry():
  131. L = TensorIndexType('Lorentz')
  132. A1 = TensorHead('A', [L, L])
  133. A2 = TensorHead('A', [L, L], TensorSymmetry.no_symmetry(2))
  134. assert A1 == A2
  135. A3 = TensorHead('A', [L, L], TensorSymmetry.fully_symmetric(2)) # Symmetric
  136. assert A1 != A3
  137. def test_no_metric_symmetry():
  138. # no metric symmetry; A no symmetry
  139. # A^d1_d0 * A^d0_d1
  140. # T_c = A^d0_d1 * A^d1_d0
  141. Lorentz = TensorIndexType('Lorentz', dummy_name='L', metric_symmetry=0)
  142. d0, d1, d2, d3 = tensor_indices('d:4', Lorentz)
  143. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  144. t = A(d1, -d0)*A(d0, -d1)
  145. tc = t.canon_bp()
  146. assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)'
  147. # A^d1_d2 * A^d0_d3 * A^d2_d1 * A^d3_d0
  148. # T_c = A^d0_d1 * A^d1_d0 * A^d2_d3 * A^d3_d2
  149. t = A(d1, -d2)*A(d0, -d3)*A(d2, -d1)*A(d3, -d0)
  150. tc = t.canon_bp()
  151. assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)*A(L_2, -L_3)*A(L_3, -L_2)'
  152. # A^d0_d2 * A^d1_d3 * A^d3_d0 * A^d2_d1
  153. # T_c = A^d0_d1 * A^d1_d2 * A^d2_d3 * A^d3_d0
  154. t = A(d0, -d1)*A(d1, -d2)*A(d2, -d3)*A(d3, -d0)
  155. tc = t.canon_bp()
  156. assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_2)*A(L_2, -L_3)*A(L_3, -L_0)'
  157. def test_canonicalize1():
  158. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  159. a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
  160. tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Lorentz)
  161. # A_d0*A^d0; ord = [d0,-d0]
  162. # T_c = A^d0*A_d0
  163. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1))
  164. t = A(-d0)*A(d0)
  165. tc = t.canon_bp()
  166. assert str(tc) == 'A(L_0)*A(-L_0)'
  167. # A commuting
  168. # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0
  169. # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2
  170. t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0)
  171. tc = t.canon_bp()
  172. assert str(tc) == 'A(L_0)*A(-L_0)*A(L_1)*A(-L_1)*A(L_2)*A(-L_2)'
  173. # A anticommuting
  174. # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0
  175. # T_c 0
  176. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1)
  177. t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0)
  178. tc = t.canon_bp()
  179. assert tc == 0
  180. # A commuting symmetric
  181. # A^{d0 b}*A^a_d1*A^d1_d0
  182. # T_c = A^{a d0}*A^{b d1}*A_{d0 d1}
  183. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  184. t = A(d0, b)*A(a, -d1)*A(d1, -d0)
  185. tc = t.canon_bp()
  186. assert str(tc) == 'A(a, L_0)*A(b, L_1)*A(-L_0, -L_1)'
  187. # A, B commuting symmetric
  188. # A^{d0 b}*A^d1_d0*B^a_d1
  189. # T_c = A^{b d0}*A_d0^d1*B^a_d1
  190. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  191. t = A(d0, b)*A(d1, -d0)*B(a, -d1)
  192. tc = t.canon_bp()
  193. assert str(tc) == 'A(b, L_0)*A(-L_0, L_1)*B(a, -L_1)'
  194. # A commuting symmetric
  195. # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1]
  196. # T_c = A^{a d0 d1}*A^{b}_{d0 d1}
  197. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3))
  198. t = A(d1, d0, b)*A(a, -d1, -d0)
  199. tc = t.canon_bp()
  200. assert str(tc) == 'A(a, L_0, L_1)*A(b, -L_0, -L_1)'
  201. # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0
  202. # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3}
  203. t = A(d3, d0, d2)*A(a0, -d1, -d2)*A(d1, -d3, a1)*A(a2, a3, -d0)
  204. tc = t.canon_bp()
  205. assert str(tc) == 'A(a0, L_0, L_1)*A(a1, -L_0, L_2)*A(a2, a3, L_3)*A(-L_1, -L_2, -L_3)'
  206. # A commuting symmetric, B antisymmetric
  207. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  208. # in this esxample and in the next three,
  209. # renaming dummy indices and using symmetry of A,
  210. # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
  211. # can = 0
  212. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3))
  213. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  214. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  215. tc = t.canon_bp()
  216. assert tc == 0
  217. # A anticommuting symmetric, B antisymmetric
  218. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  219. # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
  220. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3), 1)
  221. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  222. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  223. tc = t.canon_bp()
  224. assert str(tc) == 'A(L_0, L_1, L_2)*A(-L_0, -L_1, L_3)*B(-L_2, -L_3)'
  225. # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric
  226. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  227. # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
  228. Spinor = TensorIndexType('Spinor', dummy_name='S', metric_symmetry=-1)
  229. a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
  230. tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Spinor)
  231. A = TensorHead('A', [Spinor]*3, TensorSymmetry.fully_symmetric(3), 1)
  232. B = TensorHead('B', [Spinor]*2, TensorSymmetry.fully_symmetric(-2))
  233. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  234. tc = t.canon_bp()
  235. assert str(tc) == '-A(S_0, S_1, S_2)*A(-S_0, -S_1, S_3)*B(-S_2, -S_3)'
  236. # A anticommuting symmetric, B antisymmetric anticommuting,
  237. # no metric symmetry
  238. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  239. # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
  240. Mat = TensorIndexType('Mat', metric_symmetry=0, dummy_name='M')
  241. a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
  242. tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Mat)
  243. A = TensorHead('A', [Mat]*3, TensorSymmetry.fully_symmetric(3), 1)
  244. B = TensorHead('B', [Mat]*2, TensorSymmetry.fully_symmetric(-2))
  245. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  246. tc = t.canon_bp()
  247. assert str(tc) == 'A(M_0, M_1, M_2)*A(-M_0, -M_1, -M_3)*B(-M_2, M_3)'
  248. # Gamma anticommuting
  249. # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha}
  250. # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu}
  251. alpha, beta, gamma, mu, nu, rho = \
  252. tensor_indices('alpha,beta,gamma,mu,nu,rho', Lorentz)
  253. Gamma = TensorHead('Gamma', [Lorentz],
  254. TensorSymmetry.fully_symmetric(1), 2)
  255. Gamma2 = TensorHead('Gamma', [Lorentz]*2,
  256. TensorSymmetry.fully_symmetric(-2), 2)
  257. Gamma3 = TensorHead('Gamma', [Lorentz]*3,
  258. TensorSymmetry.fully_symmetric(-3), 2)
  259. t = Gamma2(-mu, -nu)*Gamma(rho)*Gamma3(nu, mu, alpha)
  260. tc = t.canon_bp()
  261. assert str(tc) == '-Gamma(L_0, L_1)*Gamma(rho)*Gamma(alpha, -L_0, -L_1)'
  262. # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha}
  263. # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu}
  264. t = Gamma2(mu, nu)*Gamma2(beta, gamma)*Gamma(-rho)*Gamma3(alpha, -mu, -nu)
  265. tc = t.canon_bp()
  266. assert str(tc) == 'Gamma(L_0, L_1)*Gamma(beta, gamma)*Gamma(-rho)*Gamma(alpha, -L_0, -L_1)'
  267. # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry
  268. # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b}
  269. # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15]
  270. # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e}
  271. Flavor = TensorIndexType('Flavor', dummy_name='F')
  272. a, b, c, d, e, ff = tensor_indices('a,b,c,d,e,f', Flavor)
  273. mu, nu = tensor_indices('mu,nu', Lorentz)
  274. f = TensorHead('f', [Flavor]*3, TensorSymmetry.direct_product(1, -2))
  275. A = TensorHead('A', [Lorentz, Flavor], TensorSymmetry.no_symmetry(2))
  276. t = f(c, -d, -a)*f(-c, -e, -b)*A(-mu, d)*A(-nu, a)*A(nu, e)*A(mu, b)
  277. tc = t.canon_bp()
  278. assert str(tc) == '-f(F_0, F_1, F_2)*f(-F_0, F_3, F_4)*A(L_0, -F_1)*A(-L_0, -F_3)*A(L_1, -F_2)*A(-L_1, -F_4)'
  279. def test_bug_correction_tensor_indices():
  280. # to make sure that tensor_indices does not return a list if creating
  281. # only one index:
  282. A = TensorIndexType("A")
  283. i = tensor_indices('i', A)
  284. assert not isinstance(i, (tuple, list))
  285. assert isinstance(i, TensorIndex)
  286. def test_riemann_invariants():
  287. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  288. d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = \
  289. tensor_indices('d0:12', Lorentz)
  290. # R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1]
  291. # T_c = -R^{d0 d1}_{d0 d1}
  292. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  293. t = R(d0, d1, -d1, -d0)
  294. tc = t.canon_bp()
  295. assert str(tc) == '-R(L_0, L_1, -L_0, -L_1)'
  296. # R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} *
  297. # R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10}
  298. # can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22,
  299. # 17,19,21<F10,23, 24,25]
  300. # T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} *
  301. # R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11}
  302. t = R(-d11,d1,-d0,d5)*R(d6,d4,d0,-d5)*R(-d7,-d2,-d8,-d9)* \
  303. R(-d10,-d3,-d6,-d4)*R(d2,d7,d11,-d1)*R(d8,d9,d3,d10)
  304. tc = t.canon_bp()
  305. assert str(tc) == 'R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)'
  306. def test_riemann_products():
  307. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  308. d0, d1, d2, d3, d4, d5, d6 = tensor_indices('d0:7', Lorentz)
  309. a0, a1, a2, a3, a4, a5 = tensor_indices('a0:6', Lorentz)
  310. a, b = tensor_indices('a,b', Lorentz)
  311. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  312. # R^{a b d0}_d0 = 0
  313. t = R(a, b, d0, -d0)
  314. tc = t.canon_bp()
  315. assert tc == 0
  316. # R^{d0 b a}_d0
  317. # T_c = -R^{a d0 b}_d0
  318. t = R(d0, b, a, -d0)
  319. tc = t.canon_bp()
  320. assert str(tc) == '-R(a, L_0, b, -L_0)'
  321. # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2]
  322. # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2}
  323. t = R(d1, -d2, b, -d0)*R(d0, a, -d1, d2)
  324. tc = t.canon_bp()
  325. assert str(tc) == '-R(a, L_0, L_1, L_2)*R(b, -L_0, -L_1, -L_2)'
  326. # A symmetric commuting
  327. # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5}
  328. # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15]
  329. # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6}
  330. V = TensorHead('V', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  331. t = R(d6, d5, -d2, d1)*R(d4, d0, d2, d3)*V(-d6, -d0)*V(-d3, -d1)*V(-d4, -d5)
  332. tc = t.canon_bp()
  333. assert str(tc) == '-R(L_0, L_1, L_2, L_3)*R(-L_0, L_4, L_5, L_6)*V(-L_1, -L_4)*V(-L_2, -L_5)*V(-L_3, -L_6)'
  334. # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1}
  335. # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2}
  336. t = R(d2, a0, a2, d0)*R(d1, -d2, a1, a3)*R(a4, a5, -d0, -d1)
  337. tc = t.canon_bp()
  338. assert str(tc) == 'R(a0, L_0, a2, L_1)*R(a1, a3, -L_0, L_2)*R(a4, a5, -L_1, -L_2)'
  339. ######################################################################
  340. def test_canonicalize2():
  341. D = Symbol('D')
  342. Eucl = TensorIndexType('Eucl', metric_symmetry=1, dim=D, dummy_name='E')
  343. i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14 = \
  344. tensor_indices('i0:15', Eucl)
  345. A = TensorHead('A', [Eucl]*3, TensorSymmetry.fully_symmetric(-3))
  346. # two examples from Cvitanovic, Group Theory page 59
  347. # of identities for antisymmetric tensors of rank 3
  348. # contracted according to the Kuratowski graph eq.(6.59)
  349. t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i3,i7,i5)*A(-i2,-i5,i6)*A(-i4,-i6,i8)
  350. t1 = t.canon_bp()
  351. assert t1 == 0
  352. # eq.(6.60)
  353. #t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*
  354. # A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14)
  355. t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*\
  356. A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i9,-i12,i14)
  357. t1 = t.canon_bp()
  358. assert t1 == 0
  359. def test_canonicalize3():
  360. D = Symbol('D')
  361. Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S')
  362. a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor)
  363. chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1)
  364. t = chi(a1)*psi(a0)
  365. t1 = t.canon_bp()
  366. assert t1 == t
  367. t = psi(a1)*chi(a0)
  368. t1 = t.canon_bp()
  369. assert t1 == -chi(a0)*psi(a1)
  370. def test_TensorIndexType():
  371. D = Symbol('D')
  372. Lorentz = TensorIndexType('Lorentz', metric_name='g', metric_symmetry=1,
  373. dim=D, dummy_name='L')
  374. m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz)
  375. sym2 = TensorSymmetry.fully_symmetric(2)
  376. sym2n = TensorSymmetry(*get_symmetric_group_sgs(2))
  377. assert sym2 == sym2n
  378. g = Lorentz.metric
  379. assert str(g) == 'g(Lorentz,Lorentz)'
  380. assert Lorentz.eps_dim == Lorentz.dim
  381. TSpace = TensorIndexType('TSpace', dummy_name = 'TSpace')
  382. i0, i1 = tensor_indices('i0 i1', TSpace)
  383. g = TSpace.metric
  384. A = TensorHead('A', [TSpace]*2, sym2)
  385. assert str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)'
  386. def test_indices():
  387. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  388. a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
  389. assert a.tensor_index_type == Lorentz
  390. assert a != -a
  391. A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  392. t = A(a,b)*B(-b,c)
  393. indices = t.get_indices()
  394. L_0 = TensorIndex('L_0', Lorentz)
  395. assert indices == [a, L_0, -L_0, c]
  396. raises(ValueError, lambda: tensor_indices(3, Lorentz))
  397. raises(ValueError, lambda: A(a,b,c))
  398. A = TensorHead('A', [Lorentz, Lorentz])
  399. assert A('a', 'b') == A(TensorIndex('a', Lorentz),
  400. TensorIndex('b', Lorentz))
  401. assert A('a', '-b') == A(TensorIndex('a', Lorentz),
  402. TensorIndex('b', Lorentz, is_up=False))
  403. assert A('a', TensorIndex('b', Lorentz)) == A(TensorIndex('a', Lorentz),
  404. TensorIndex('b', Lorentz))
  405. def test_TensorSymmetry():
  406. assert TensorSymmetry.fully_symmetric(2) == \
  407. TensorSymmetry(get_symmetric_group_sgs(2))
  408. assert TensorSymmetry.fully_symmetric(-3) == \
  409. TensorSymmetry(get_symmetric_group_sgs(3, True))
  410. assert TensorSymmetry.direct_product(-4) == \
  411. TensorSymmetry.fully_symmetric(-4)
  412. assert TensorSymmetry.fully_symmetric(-1) == \
  413. TensorSymmetry.fully_symmetric(1)
  414. assert TensorSymmetry.direct_product(1, -1, 1) == \
  415. TensorSymmetry.no_symmetry(3)
  416. assert TensorSymmetry(get_symmetric_group_sgs(2)) == \
  417. TensorSymmetry(*get_symmetric_group_sgs(2))
  418. # TODO: add check for *get_symmetric_group_sgs(0)
  419. sym = TensorSymmetry.fully_symmetric(-3)
  420. assert sym.rank == 3
  421. assert sym.base == Tuple(0, 1)
  422. assert sym.generators == Tuple(Permutation(0, 1)(3, 4), Permutation(1, 2)(3, 4))
  423. def test_TensExpr():
  424. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  425. a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
  426. g = Lorentz.metric
  427. A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  428. raises(ValueError, lambda: g(c, d)/g(a, b))
  429. raises(ValueError, lambda: S.One/g(a, b))
  430. raises(ValueError, lambda: (A(c, d) + g(c, d))/g(a, b))
  431. raises(ValueError, lambda: S.One/(A(c, d) + g(c, d)))
  432. raises(ValueError, lambda: A(a, b) + A(a, c))
  433. #t = A(a, b) + B(a, b) # assigned to t for below
  434. #raises(NotImplementedError, lambda: TensExpr.__mul__(t, 'a'))
  435. #raises(NotImplementedError, lambda: TensExpr.__add__(t, 'a'))
  436. #raises(NotImplementedError, lambda: TensExpr.__radd__(t, 'a'))
  437. #raises(NotImplementedError, lambda: TensExpr.__sub__(t, 'a'))
  438. #raises(NotImplementedError, lambda: TensExpr.__rsub__(t, 'a'))
  439. #raises(NotImplementedError, lambda: TensExpr.__truediv__(t, 'a'))
  440. #raises(NotImplementedError, lambda: TensExpr.__rtruediv__(t, 'a'))
  441. with warns_deprecated_sympy():
  442. # DO NOT REMOVE THIS AFTER DEPRECATION REMOVED:
  443. raises(ValueError, lambda: A(a, b)**2)
  444. raises(NotImplementedError, lambda: 2**A(a, b))
  445. raises(NotImplementedError, lambda: abs(A(a, b)))
  446. def test_TensorHead():
  447. # simple example of algebraic expression
  448. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  449. A = TensorHead('A', [Lorentz]*2)
  450. assert A.name == 'A'
  451. assert A.index_types == [Lorentz, Lorentz]
  452. assert A.rank == 2
  453. assert A.symmetry == TensorSymmetry.no_symmetry(2)
  454. assert A.comm == 0
  455. def test_add1():
  456. assert TensAdd().args == ()
  457. assert TensAdd().doit() == 0
  458. # simple example of algebraic expression
  459. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  460. a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz)
  461. # A, B symmetric
  462. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  463. t1 = A(b, -d0)*B(d0, a)
  464. assert TensAdd(t1).equals(t1)
  465. t2a = B(d0, a) + A(d0, a)
  466. t2 = A(b, -d0)*t2a
  467. assert str(t2) == 'A(b, -L_0)*(A(L_0, a) + B(L_0, a))'
  468. t2 = t2.expand()
  469. assert str(t2) == 'A(b, -L_0)*A(L_0, a) + A(b, -L_0)*B(L_0, a)'
  470. t2 = t2.canon_bp()
  471. assert str(t2) == 'A(a, L_0)*A(b, -L_0) + A(b, L_0)*B(a, -L_0)'
  472. t2b = t2 + t1
  473. assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + A(b, -L_0)*B(L_0, a) + A(b, L_0)*B(a, -L_0)'
  474. t2b = t2b.canon_bp()
  475. assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + 2*A(b, L_0)*B(a, -L_0)'
  476. p, q, r = tensor_heads('p,q,r', [Lorentz])
  477. t = q(d0)*2
  478. assert str(t) == '2*q(d0)'
  479. t = 2*q(d0)
  480. assert str(t) == '2*q(d0)'
  481. t1 = p(d0) + 2*q(d0)
  482. assert str(t1) == '2*q(d0) + p(d0)'
  483. t2 = p(-d0) + 2*q(-d0)
  484. assert str(t2) == '2*q(-d0) + p(-d0)'
  485. t1 = p(d0)
  486. t3 = t1*t2
  487. assert str(t3) == 'p(L_0)*(2*q(-L_0) + p(-L_0))'
  488. t3 = t3.expand()
  489. assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)'
  490. t3 = t2*t1
  491. t3 = t3.expand()
  492. assert str(t3) == 'p(-L_0)*p(L_0) + 2*q(-L_0)*p(L_0)'
  493. t3 = t3.canon_bp()
  494. assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)'
  495. t1 = p(d0) + 2*q(d0)
  496. t3 = t1*t2
  497. t3 = t3.canon_bp()
  498. assert str(t3) == 'p(L_0)*p(-L_0) + 4*p(L_0)*q(-L_0) + 4*q(L_0)*q(-L_0)'
  499. t1 = p(d0) - 2*q(d0)
  500. assert str(t1) == '-2*q(d0) + p(d0)'
  501. t2 = p(-d0) + 2*q(-d0)
  502. t3 = t1*t2
  503. t3 = t3.canon_bp()
  504. assert t3 == p(d0)*p(-d0) - 4*q(d0)*q(-d0)
  505. t = p(i)*p(j)*(p(k) + q(k)) + p(i)*(p(j) + q(j))*(p(k) - 3*q(k))
  506. t = t.canon_bp()
  507. assert t == 2*p(i)*p(j)*p(k) - 2*p(i)*p(j)*q(k) + p(i)*p(k)*q(j) - 3*p(i)*q(j)*q(k)
  508. t1 = (p(i) + q(i) + 2*r(i))*(p(j) - q(j))
  509. t2 = (p(j) + q(j) + 2*r(j))*(p(i) - q(i))
  510. t = t1 + t2
  511. t = t.canon_bp()
  512. assert t == 2*p(i)*p(j) + 2*p(i)*r(j) + 2*p(j)*r(i) - 2*q(i)*q(j) - 2*q(i)*r(j) - 2*q(j)*r(i)
  513. t = p(i)*q(j)/2
  514. assert 2*t == p(i)*q(j)
  515. t = (p(i) + q(i))/2
  516. assert 2*t == p(i) + q(i)
  517. t = S.One - p(i)*p(-i)
  518. t = t.canon_bp()
  519. tz1 = t + p(-j)*p(j)
  520. assert tz1 != 1
  521. tz1 = tz1.canon_bp()
  522. assert tz1.equals(1)
  523. t = S.One + p(i)*p(-i)
  524. assert (t - p(-j)*p(j)).canon_bp().equals(1)
  525. t = A(a, b) + B(a, b)
  526. assert t.rank == 2
  527. t1 = t - A(a, b) - B(a, b)
  528. assert t1 == 0
  529. t = 1 - (A(a, -a) + B(a, -a))
  530. t1 = 1 + (A(a, -a) + B(a, -a))
  531. assert (t + t1).expand().equals(2)
  532. t2 = 1 + A(a, -a)
  533. assert t1 != t2
  534. assert t2 != TensMul.from_data(0, [], [], [])
  535. def test_special_eq_ne():
  536. # test special equality cases:
  537. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  538. a, b, d0, d1, i, j, k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz)
  539. # A, B symmetric
  540. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  541. p, q, r = tensor_heads('p,q,r', [Lorentz])
  542. t = 0*A(a, b)
  543. assert _is_equal(t, 0)
  544. assert _is_equal(t, S.Zero)
  545. assert p(i) != A(a, b)
  546. assert A(a, -a) != A(a, b)
  547. assert 0*(A(a, b) + B(a, b)) == 0
  548. assert 0*(A(a, b) + B(a, b)) is S.Zero
  549. assert 3*(A(a, b) - A(a, b)) is S.Zero
  550. assert p(i) + q(i) != A(a, b)
  551. assert p(i) + q(i) != A(a, b) + B(a, b)
  552. assert p(i) - p(i) == 0
  553. assert p(i) - p(i) is S.Zero
  554. assert _is_equal(A(a, b), A(b, a))
  555. def test_add2():
  556. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  557. m, n, p, q = tensor_indices('m,n,p,q', Lorentz)
  558. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  559. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3))
  560. t1 = 2*R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q)
  561. t2 = t1*A(-n, -p, -q)
  562. t2 = t2.canon_bp()
  563. assert t2 == 0
  564. t1 = Rational(2, 3)*R(m,n,p,q) - Rational(1, 3)*R(m,q,n,p) + Rational(1, 3)*R(m,p,n,q)
  565. t2 = t1*A(-n, -p, -q)
  566. t2 = t2.canon_bp()
  567. assert t2 == 0
  568. t = A(m, -m, n) + A(n, p, -p)
  569. t = t.canon_bp()
  570. assert t == 0
  571. def test_add3():
  572. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  573. i0, i1 = tensor_indices('i0:2', Lorentz)
  574. E, px, py, pz = symbols('E px py pz')
  575. A = TensorHead('A', [Lorentz])
  576. B = TensorHead('B', [Lorentz])
  577. expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2)
  578. assert expr1.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0))
  579. expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0)
  580. assert expr2.args == (E**2, -px**2, -py**2, -pz**2, -A(i0)*A(-i0))
  581. expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2
  582. assert expr3.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0))
  583. expr4 = B(i1)*B(-i1) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0)
  584. assert expr4.args == (2*E**2, -2*px**2, -2*py**2, -2*pz**2, B(i1)*B(-i1), -A(i0)*A(-i0))
  585. def test_mul():
  586. from sympy.abc import x
  587. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  588. a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
  589. t = TensMul.from_data(S.One, [], [], [])
  590. assert str(t) == '1'
  591. A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  592. t = (1 + x)*A(a, b)
  593. assert str(t) == '(x + 1)*A(a, b)'
  594. assert t.index_types == [Lorentz, Lorentz]
  595. assert t.rank == 2
  596. assert t.dum == []
  597. assert t.coeff == 1 + x
  598. assert sorted(t.free) == [(a, 0), (b, 1)]
  599. assert t.components == [A]
  600. ts = A(a, b)
  601. assert str(ts) == 'A(a, b)'
  602. assert ts.index_types == [Lorentz, Lorentz]
  603. assert ts.rank == 2
  604. assert ts.dum == []
  605. assert ts.coeff == 1
  606. assert sorted(ts.free) == [(a, 0), (b, 1)]
  607. assert ts.components == [A]
  608. t = A(-b, a)*B(-a, c)*A(-c, d)
  609. t1 = tensor_mul(*t.split())
  610. assert t == t1
  611. assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], [])
  612. t = TensMul.from_data(1, [], [], [])
  613. C = TensorHead('C', [])
  614. assert str(C()) == 'C'
  615. assert str(t) == '1'
  616. assert t == 1
  617. raises(ValueError, lambda: A(a, b)*A(a, c))
  618. def test_substitute_indices():
  619. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  620. i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz)
  621. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  622. p = TensorHead('p', [Lorentz])
  623. t = p(i)
  624. t1 = t.substitute_indices((j, k))
  625. assert t1 == t
  626. t1 = t.substitute_indices((i, j))
  627. assert t1 == p(j)
  628. t1 = t.substitute_indices((i, -j))
  629. assert t1 == p(-j)
  630. t1 = t.substitute_indices((-i, j))
  631. assert t1 == p(-j)
  632. t1 = t.substitute_indices((-i, -j))
  633. assert t1 == p(j)
  634. t = A(m, n)
  635. t1 = t.substitute_indices((m, i), (n, -i))
  636. assert t1 == A(n, -n)
  637. t1 = substitute_indices(t, (m, i), (n, -i))
  638. assert t1 == A(n, -n)
  639. t = A(i, k)*B(-k, -j)
  640. t1 = t.substitute_indices((i, j), (j, k))
  641. t1a = A(j, l)*B(-l, -k)
  642. assert t1 == t1a
  643. t1 = substitute_indices(t, (i, j), (j, k))
  644. assert t1 == t1a
  645. t = A(i, j) + B(i, j)
  646. t1 = t.substitute_indices((j, -i))
  647. t1a = A(i, -i) + B(i, -i)
  648. assert t1 == t1a
  649. t1 = substitute_indices(t, (j, -i))
  650. assert t1 == t1a
  651. def test_riemann_cyclic_replace():
  652. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  653. m0, m1, m2, m3 = tensor_indices('m:4', Lorentz)
  654. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  655. t = R(m0, m2, m1, m3)
  656. t1 = riemann_cyclic_replace(t)
  657. t1a = Rational(-1, 3)*R(m0, m3, m2, m1) + Rational(1, 3)*R(m0, m1, m2, m3) + Rational(2, 3)*R(m0, m2, m1, m3)
  658. assert t1 == t1a
  659. def test_riemann_cyclic():
  660. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  661. i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz)
  662. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  663. t = R(i,j,k,l) + R(i,l,j,k) + R(i,k,l,j) - \
  664. R(i,j,l,k) - R(i,l,k,j) - R(i,k,j,l)
  665. t2 = t*R(-i,-j,-k,-l)
  666. t3 = riemann_cyclic(t2)
  667. assert t3 == 0
  668. t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
  669. t1 = riemann_cyclic(t)
  670. assert t1 == 0
  671. t = R(i,j,k,l)
  672. t1 = riemann_cyclic(t)
  673. assert t1 == Rational(-1, 3)*R(i, l, j, k) + Rational(1, 3)*R(i, k, j, l) + Rational(2, 3)*R(i, j, k, l)
  674. t = R(i,j,k,l)*R(-k,-l,m,n)*(R(-m,-n,-i,-j) + 2*R(-m,-j,-n,-i))
  675. t1 = riemann_cyclic(t)
  676. assert t1 == 0
  677. @XFAIL
  678. def test_div():
  679. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  680. m0, m1, m2, m3 = tensor_indices('m0:4', Lorentz)
  681. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  682. t = R(m0,m1,-m1,m3)
  683. t1 = t/S(4)
  684. assert str(t1) == '(1/4)*R(m0, L_0, -L_0, m3)'
  685. t = t.canon_bp()
  686. assert not t1._is_canon_bp
  687. t1 = t*4
  688. assert t1._is_canon_bp
  689. t1 = t1/4
  690. assert t1._is_canon_bp
  691. def test_contract_metric1():
  692. D = Symbol('D')
  693. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  694. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  695. g = Lorentz.metric
  696. p = TensorHead('p', [Lorentz])
  697. t = g(a, b)*p(-b)
  698. t1 = t.contract_metric(g)
  699. assert t1 == p(a)
  700. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  701. # case with g with all free indices
  702. t1 = A(a,b)*B(-b,c)*g(d, e)
  703. t2 = t1.contract_metric(g)
  704. assert t1 == t2
  705. # case of g(d, -d)
  706. t1 = A(a,b)*B(-b,c)*g(-d, d)
  707. t2 = t1.contract_metric(g)
  708. assert t2 == D*A(a, d)*B(-d, c)
  709. # g with one free index
  710. t1 = A(a,b)*B(-b,-c)*g(c, d)
  711. t2 = t1.contract_metric(g)
  712. assert t2 == A(a, c)*B(-c, d)
  713. # g with both indices contracted with another tensor
  714. t1 = A(a,b)*B(-b,-c)*g(c, -a)
  715. t2 = t1.contract_metric(g)
  716. assert _is_equal(t2, A(a, b)*B(-b, -a))
  717. t1 = A(a,b)*B(-b,-c)*g(c, d)*g(-a, -d)
  718. t2 = t1.contract_metric(g)
  719. assert _is_equal(t2, A(a,b)*B(-b,-a))
  720. t1 = A(a,b)*g(-a,-b)
  721. t2 = t1.contract_metric(g)
  722. assert _is_equal(t2, A(a, -a))
  723. assert not t2.free
  724. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  725. a, b = tensor_indices('a,b', Lorentz)
  726. g = Lorentz.metric
  727. assert _is_equal(g(a, -a).contract_metric(g), Lorentz.dim) # no dim
  728. def test_contract_metric2():
  729. D = Symbol('D')
  730. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  731. a, b, c, d, e, L_0 = tensor_indices('a,b,c,d,e,L_0', Lorentz)
  732. g = Lorentz.metric
  733. p, q = tensor_heads('p,q', [Lorentz])
  734. t1 = g(a,b)*p(c)*p(-c)
  735. t2 = 3*g(-a,-b)*q(c)*q(-c)
  736. t = t1*t2
  737. t = t.contract_metric(g)
  738. assert t == 3*D*p(a)*p(-a)*q(b)*q(-b)
  739. t1 = g(a,b)*p(c)*p(-c)
  740. t2 = 3*q(-a)*q(-b)
  741. t = t1*t2
  742. t = t.contract_metric(g)
  743. t = t.canon_bp()
  744. assert t == 3*p(a)*p(-a)*q(b)*q(-b)
  745. t1 = 2*g(a,b)*p(c)*p(-c)
  746. t2 = - 3*g(-a,-b)*q(c)*q(-c)
  747. t = t1*t2
  748. t = t.contract_metric(g)
  749. t = 6*g(a,b)*g(-a,-b)*p(c)*p(-c)*q(d)*q(-d)
  750. t = t.contract_metric(g)
  751. t1 = 2*g(a,b)*p(c)*p(-c)
  752. t2 = q(-a)*q(-b) + 3*g(-a,-b)*q(c)*q(-c)
  753. t = t1*t2
  754. t = t.contract_metric(g)
  755. assert t == (2 + 6*D)*p(a)*p(-a)*q(b)*q(-b)
  756. t1 = p(a)*p(b) + p(a)*q(b) + 2*g(a,b)*p(c)*p(-c)
  757. t2 = q(-a)*q(-b) - g(-a,-b)*q(c)*q(-c)
  758. t = t1*t2
  759. t = t.contract_metric(g)
  760. t1 = (1 - 2*D)*p(a)*p(-a)*q(b)*q(-b) + p(a)*q(-a)*p(b)*q(-b)
  761. assert canon_bp(t - t1) == 0
  762. t = g(a,b)*g(c,d)*g(-b,-c)
  763. t1 = t.contract_metric(g)
  764. assert t1 == g(a, d)
  765. t1 = g(a,b)*g(c,d) + g(a,c)*g(b,d) + g(a,d)*g(b,c)
  766. t2 = t1.substitute_indices((a,-a),(b,-b),(c,-c),(d,-d))
  767. t = t1*t2
  768. t = t.contract_metric(g)
  769. assert t.equals(3*D**2 + 6*D)
  770. t = 2*p(a)*g(b,-b)
  771. t1 = t.contract_metric(g)
  772. assert t1.equals(2*D*p(a))
  773. t = 2*p(a)*g(b,-a)
  774. t1 = t.contract_metric(g)
  775. assert t1 == 2*p(b)
  776. M = Symbol('M')
  777. t = (p(a)*p(b) + g(a, b)*M**2)*g(-a, -b) - D*M**2
  778. t1 = t.contract_metric(g)
  779. assert t1 == p(a)*p(-a)
  780. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  781. t = A(a, b)*p(L_0)*g(-a, -b)
  782. t1 = t.contract_metric(g)
  783. assert str(t1) == 'A(L_1, -L_1)*p(L_0)' or str(t1) == 'A(-L_1, L_1)*p(L_0)'
  784. def test_metric_contract3():
  785. D = Symbol('D')
  786. Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S')
  787. a0, a1, a2, a3, a4 = tensor_indices('a0:5', Spinor)
  788. C = Spinor.metric
  789. chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1)
  790. B = TensorHead('B', [Spinor]*2, TensorSymmetry.no_symmetry(2))
  791. t = C(a0,-a0)
  792. t1 = t.contract_metric(C)
  793. assert t1.equals(-D)
  794. t = C(-a0,a0)
  795. t1 = t.contract_metric(C)
  796. assert t1.equals(D)
  797. t = C(a0,a1)*C(-a0,-a1)
  798. t1 = t.contract_metric(C)
  799. assert t1.equals(D)
  800. t = C(a1,a0)*C(-a0,-a1)
  801. t1 = t.contract_metric(C)
  802. assert t1.equals(-D)
  803. t = C(-a0,a1)*C(a0,-a1)
  804. t1 = t.contract_metric(C)
  805. assert t1.equals(-D)
  806. t = C(a1,-a0)*C(a0,-a1)
  807. t1 = t.contract_metric(C)
  808. assert t1.equals(D)
  809. t = C(a0,a1)*B(-a1,-a0)
  810. t1 = t.contract_metric(C)
  811. t1 = t1.canon_bp()
  812. assert _is_equal(t1, B(a0,-a0))
  813. t = C(a1,a0)*B(-a1,-a0)
  814. t1 = t.contract_metric(C)
  815. assert _is_equal(t1, -B(a0,-a0))
  816. t = C(a0,-a1)*B(a1,-a0)
  817. t1 = t.contract_metric(C)
  818. assert _is_equal(t1, -B(a0,-a0))
  819. t = C(-a0,a1)*B(-a1,a0)
  820. t1 = t.contract_metric(C)
  821. assert _is_equal(t1, -B(a0,-a0))
  822. t = C(-a0,-a1)*B(a1,a0)
  823. t1 = t.contract_metric(C)
  824. assert _is_equal(t1, B(a0,-a0))
  825. t = C(-a1, a0)*B(a1,-a0)
  826. t1 = t.contract_metric(C)
  827. assert _is_equal(t1, B(a0,-a0))
  828. t = C(a0,a1)*psi(-a1)
  829. t1 = t.contract_metric(C)
  830. assert _is_equal(t1, psi(a0))
  831. t = C(a1,a0)*psi(-a1)
  832. t1 = t.contract_metric(C)
  833. assert _is_equal(t1, -psi(a0))
  834. t = C(a0,a1)*chi(-a0)*psi(-a1)
  835. t1 = t.contract_metric(C)
  836. assert _is_equal(t1, -chi(a1)*psi(-a1))
  837. t = C(a1,a0)*chi(-a0)*psi(-a1)
  838. t1 = t.contract_metric(C)
  839. assert _is_equal(t1, chi(a1)*psi(-a1))
  840. t = C(-a1,a0)*chi(-a0)*psi(a1)
  841. t1 = t.contract_metric(C)
  842. assert _is_equal(t1, chi(-a1)*psi(a1))
  843. t = C(a0,-a1)*chi(-a0)*psi(a1)
  844. t1 = t.contract_metric(C)
  845. assert _is_equal(t1, -chi(-a1)*psi(a1))
  846. t = C(-a0,-a1)*chi(a0)*psi(a1)
  847. t1 = t.contract_metric(C)
  848. assert _is_equal(t1, chi(-a1)*psi(a1))
  849. t = C(-a1,-a0)*chi(a0)*psi(a1)
  850. t1 = t.contract_metric(C)
  851. assert _is_equal(t1, -chi(-a1)*psi(a1))
  852. t = C(-a1,-a0)*B(a0,a2)*psi(a1)
  853. t1 = t.contract_metric(C)
  854. assert _is_equal(t1, -B(-a1,a2)*psi(a1))
  855. t = C(a1,a0)*B(-a2,-a0)*psi(-a1)
  856. t1 = t.contract_metric(C)
  857. assert _is_equal(t1, B(-a2,a1)*psi(-a1))
  858. def test_epsilon():
  859. Lorentz = TensorIndexType('Lorentz', dim=4, dummy_name='L')
  860. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  861. epsilon = Lorentz.epsilon
  862. p, q, r, s = tensor_heads('p,q,r,s', [Lorentz])
  863. t = epsilon(b,a,c,d)
  864. t1 = t.canon_bp()
  865. assert t1 == -epsilon(a,b,c,d)
  866. t = epsilon(c,b,d,a)
  867. t1 = t.canon_bp()
  868. assert t1 == epsilon(a,b,c,d)
  869. t = epsilon(c,a,d,b)
  870. t1 = t.canon_bp()
  871. assert t1 == -epsilon(a,b,c,d)
  872. t = epsilon(a,b,c,d)*p(-a)*q(-b)
  873. t1 = t.canon_bp()
  874. assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b)
  875. t = epsilon(c,b,d,a)*p(-a)*q(-b)
  876. t1 = t.canon_bp()
  877. assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b)
  878. t = epsilon(c,a,d,b)*p(-a)*q(-b)
  879. t1 = t.canon_bp()
  880. assert t1 == -epsilon(c,d,a,b)*p(-a)*q(-b)
  881. t = epsilon(c,a,d,b)*p(-a)*p(-b)
  882. t1 = t.canon_bp()
  883. assert t1 == 0
  884. t = epsilon(c,a,d,b)*p(-a)*q(-b) + epsilon(a,b,c,d)*p(-b)*q(-a)
  885. t1 = t.canon_bp()
  886. assert t1 == -2*epsilon(c,d,a,b)*p(-a)*q(-b)
  887. # Test that epsilon can be create with a SymPy integer:
  888. Lorentz = TensorIndexType('Lorentz', dim=Integer(4), dummy_name='L')
  889. epsilon = Lorentz.epsilon
  890. assert isinstance(epsilon, TensorHead)
  891. def test_contract_delta1():
  892. # see Group Theory by Cvitanovic page 9
  893. n = Symbol('n')
  894. Color = TensorIndexType('Color', dim=n, dummy_name='C')
  895. a, b, c, d, e, f = tensor_indices('a,b,c,d,e,f', Color)
  896. delta = Color.delta
  897. def idn(a, b, d, c):
  898. assert a.is_up and d.is_up
  899. assert not (b.is_up or c.is_up)
  900. return delta(a,c)*delta(d,b)
  901. def T(a, b, d, c):
  902. assert a.is_up and d.is_up
  903. assert not (b.is_up or c.is_up)
  904. return delta(a,b)*delta(d,c)
  905. def P1(a, b, c, d):
  906. return idn(a,b,c,d) - 1/n*T(a,b,c,d)
  907. def P2(a, b, c, d):
  908. return 1/n*T(a,b,c,d)
  909. t = P1(a, -b, e, -f)*P1(f, -e, d, -c)
  910. t1 = t.contract_delta(delta)
  911. assert canon_bp(t1 - P1(a, -b, d, -c)) == 0
  912. t = P2(a, -b, e, -f)*P2(f, -e, d, -c)
  913. t1 = t.contract_delta(delta)
  914. assert t1 == P2(a, -b, d, -c)
  915. t = P1(a, -b, e, -f)*P2(f, -e, d, -c)
  916. t1 = t.contract_delta(delta)
  917. assert t1 == 0
  918. t = P1(a, -b, b, -a)
  919. t1 = t.contract_delta(delta)
  920. assert t1.equals(n**2 - 1)
  921. def test_fun():
  922. with warns_deprecated_sympy():
  923. D = Symbol('D')
  924. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  925. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  926. g = Lorentz.metric
  927. p, q = tensor_heads('p q', [Lorentz])
  928. t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d)
  929. assert t(a,b,c) == t
  930. assert canon_bp(t - t(b,a,c) - q(c)*p(a)*q(b) + q(c)*p(b)*q(a)) == 0
  931. assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e)
  932. t1 = t.substitute_indices((a,b),(b,a))
  933. assert canon_bp(t1 - q(c)*p(b)*q(a) - g(a,b)*g(c,d)*q(-d)) == 0
  934. # check that g_{a b; c} = 0
  935. # example taken from L. Brewin
  936. # "A brief introduction to Cadabra" arxiv:0903.2085
  937. # dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c
  938. dg = TensorHead('dg', [Lorentz]*3, TensorSymmetry.direct_product(1, 2))
  939. # gamma^a_{b c} is the Christoffel symbol
  940. gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c))
  941. # t = g_{a b; c}
  942. t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c)
  943. t = t.contract_metric(g)
  944. assert t == 0
  945. t = q(c)*p(a)*q(b)
  946. assert t(b,c,d) == q(d)*p(b)*q(c)
  947. def test_TensorManager():
  948. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  949. LorentzH = TensorIndexType('LorentzH', dummy_name='LH')
  950. i, j = tensor_indices('i,j', Lorentz)
  951. ih, jh = tensor_indices('ih,jh', LorentzH)
  952. p, q = tensor_heads('p q', [Lorentz])
  953. ph, qh = tensor_heads('ph qh', [LorentzH])
  954. Gsymbol = Symbol('Gsymbol')
  955. GHsymbol = Symbol('GHsymbol')
  956. TensorManager.set_comm(Gsymbol, GHsymbol, 0)
  957. G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), Gsymbol)
  958. assert TensorManager._comm_i2symbol[G.comm] == Gsymbol
  959. GH = TensorHead('GH', [LorentzH], TensorSymmetry.no_symmetry(1), GHsymbol)
  960. ps = G(i)*p(-i)
  961. psh = GH(ih)*ph(-ih)
  962. t = ps + psh
  963. t1 = t*t
  964. assert canon_bp(t1 - ps*ps - 2*ps*psh - psh*psh) == 0
  965. qs = G(i)*q(-i)
  966. qsh = GH(ih)*qh(-ih)
  967. assert _is_equal(ps*qsh, qsh*ps)
  968. assert not _is_equal(ps*qs, qs*ps)
  969. n = TensorManager.comm_symbols2i(Gsymbol)
  970. assert TensorManager.comm_i2symbol(n) == Gsymbol
  971. assert GHsymbol in TensorManager._comm_symbols2i
  972. raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2))
  973. TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1))
  974. assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1
  975. TensorManager.clear()
  976. assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}]
  977. assert GHsymbol not in TensorManager._comm_symbols2i
  978. nh = TensorManager.comm_symbols2i(GHsymbol)
  979. assert TensorManager.comm_i2symbol(nh) == GHsymbol
  980. assert GHsymbol in TensorManager._comm_symbols2i
  981. def test_hash():
  982. D = Symbol('D')
  983. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  984. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  985. g = Lorentz.metric
  986. p, q = tensor_heads('p q', [Lorentz])
  987. p_type = p.args[1]
  988. t1 = p(a)*q(b)
  989. t2 = p(a)*p(b)
  990. assert hash(t1) != hash(t2)
  991. t3 = p(a)*p(b) + g(a,b)
  992. t4 = p(a)*p(b) - g(a,b)
  993. assert hash(t3) != hash(t4)
  994. assert a.func(*a.args) == a
  995. assert Lorentz.func(*Lorentz.args) == Lorentz
  996. assert g.func(*g.args) == g
  997. assert p.func(*p.args) == p
  998. assert p_type.func(*p_type.args) == p_type
  999. assert p(a).func(*(p(a)).args) == p(a)
  1000. assert t1.func(*t1.args) == t1
  1001. assert t2.func(*t2.args) == t2
  1002. assert t3.func(*t3.args) == t3
  1003. assert t4.func(*t4.args) == t4
  1004. assert hash(a.func(*a.args)) == hash(a)
  1005. assert hash(Lorentz.func(*Lorentz.args)) == hash(Lorentz)
  1006. assert hash(g.func(*g.args)) == hash(g)
  1007. assert hash(p.func(*p.args)) == hash(p)
  1008. assert hash(p_type.func(*p_type.args)) == hash(p_type)
  1009. assert hash(p(a).func(*(p(a)).args)) == hash(p(a))
  1010. assert hash(t1.func(*t1.args)) == hash(t1)
  1011. assert hash(t2.func(*t2.args)) == hash(t2)
  1012. assert hash(t3.func(*t3.args)) == hash(t3)
  1013. assert hash(t4.func(*t4.args)) == hash(t4)
  1014. def check_all(obj):
  1015. return all([isinstance(_, Basic) for _ in obj.args])
  1016. assert check_all(a)
  1017. assert check_all(Lorentz)
  1018. assert check_all(g)
  1019. assert check_all(p)
  1020. assert check_all(p_type)
  1021. assert check_all(p(a))
  1022. assert check_all(t1)
  1023. assert check_all(t2)
  1024. assert check_all(t3)
  1025. assert check_all(t4)
  1026. tsymmetry = TensorSymmetry.direct_product(-2, 1, 3)
  1027. assert tsymmetry.func(*tsymmetry.args) == tsymmetry
  1028. assert hash(tsymmetry.func(*tsymmetry.args)) == hash(tsymmetry)
  1029. assert check_all(tsymmetry)
  1030. ### TEST VALUED TENSORS ###
  1031. def _get_valued_base_test_variables():
  1032. minkowski = Matrix((
  1033. (1, 0, 0, 0),
  1034. (0, -1, 0, 0),
  1035. (0, 0, -1, 0),
  1036. (0, 0, 0, -1),
  1037. ))
  1038. Lorentz = TensorIndexType('Lorentz', dim=4)
  1039. Lorentz.data = minkowski
  1040. i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz)
  1041. E, px, py, pz = symbols('E px py pz')
  1042. A = TensorHead('A', [Lorentz])
  1043. A.data = [E, px, py, pz]
  1044. B = TensorHead('B', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
  1045. B.data = range(4)
  1046. AB = TensorHead("AB", [Lorentz]*2)
  1047. AB.data = minkowski
  1048. ba_matrix = Matrix((
  1049. (1, 2, 3, 4),
  1050. (5, 6, 7, 8),
  1051. (9, 0, -1, -2),
  1052. (-3, -4, -5, -6),
  1053. ))
  1054. BA = TensorHead("BA", [Lorentz]*2)
  1055. BA.data = ba_matrix
  1056. # Let's test the diagonal metric, with inverted Minkowski metric:
  1057. LorentzD = TensorIndexType('LorentzD')
  1058. LorentzD.data = [-1, 1, 1, 1]
  1059. mu0, mu1, mu2 = tensor_indices('mu0:3', LorentzD)
  1060. C = TensorHead('C', [LorentzD])
  1061. C.data = [E, px, py, pz]
  1062. ### non-diagonal metric ###
  1063. ndm_matrix = (
  1064. (1, 1, 0,),
  1065. (1, 0, 1),
  1066. (0, 1, 0,),
  1067. )
  1068. ndm = TensorIndexType("ndm")
  1069. ndm.data = ndm_matrix
  1070. n0, n1, n2 = tensor_indices('n0:3', ndm)
  1071. NA = TensorHead('NA', [ndm])
  1072. NA.data = range(10, 13)
  1073. NB = TensorHead('NB', [ndm]*2)
  1074. NB.data = [[i+j for j in range(10, 13)] for i in range(10, 13)]
  1075. NC = TensorHead('NC', [ndm]*3)
  1076. NC.data = [[[i+j+k for k in range(4, 7)] for j in range(1, 4)] for i in range(2, 5)]
  1077. return (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1078. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4)
  1079. def test_valued_tensor_iter():
  1080. with warns_deprecated_sympy():
  1081. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1082. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1083. list_BA = [Array([1, 2, 3, 4]), Array([5, 6, 7, 8]), Array([9, 0, -1, -2]), Array([-3, -4, -5, -6])]
  1084. # iteration on VTensorHead
  1085. assert list(A) == [E, px, py, pz]
  1086. assert list(ba_matrix) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -1, -2, -3, -4, -5, -6]
  1087. assert list(BA) == list_BA
  1088. # iteration on VTensMul
  1089. assert list(A(i1)) == [E, px, py, pz]
  1090. assert list(BA(i1, i2)) == list_BA
  1091. assert list(3 * BA(i1, i2)) == [3 * i for i in list_BA]
  1092. assert list(-5 * BA(i1, i2)) == [-5 * i for i in list_BA]
  1093. # iteration on VTensAdd
  1094. # A(i1) + A(i1)
  1095. assert list(A(i1) + A(i1)) == [2*E, 2*px, 2*py, 2*pz]
  1096. assert BA(i1, i2) - BA(i1, i2) == 0
  1097. assert list(BA(i1, i2) - 2 * BA(i1, i2)) == [-i for i in list_BA]
  1098. def test_valued_tensor_covariant_contravariant_elements():
  1099. with warns_deprecated_sympy():
  1100. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1101. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1102. assert A(-i0)[0] == A(i0)[0]
  1103. assert A(-i0)[1] == -A(i0)[1]
  1104. assert AB(i0, i1)[1, 1] == -1
  1105. assert AB(i0, -i1)[1, 1] == 1
  1106. assert AB(-i0, -i1)[1, 1] == -1
  1107. assert AB(-i0, i1)[1, 1] == 1
  1108. def test_valued_tensor_get_matrix():
  1109. with warns_deprecated_sympy():
  1110. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1111. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1112. matab = AB(i0, i1).get_matrix()
  1113. assert matab == Matrix([
  1114. [1, 0, 0, 0],
  1115. [0, -1, 0, 0],
  1116. [0, 0, -1, 0],
  1117. [0, 0, 0, -1],
  1118. ])
  1119. # when alternating contravariant/covariant with [1, -1, -1, -1] metric
  1120. # it becomes the identity matrix:
  1121. assert AB(i0, -i1).get_matrix() == eye(4)
  1122. # covariant and contravariant forms:
  1123. assert A(i0).get_matrix() == Matrix([E, px, py, pz])
  1124. assert A(-i0).get_matrix() == Matrix([E, -px, -py, -pz])
  1125. def test_valued_tensor_contraction():
  1126. with warns_deprecated_sympy():
  1127. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1128. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1129. assert (A(i0) * A(-i0)).data == E ** 2 - px ** 2 - py ** 2 - pz ** 2
  1130. assert (A(i0) * A(-i0)).data == A ** 2
  1131. assert (A(i0) * A(-i0)).data == A(i0) ** 2
  1132. assert (A(i0) * B(-i0)).data == -px - 2 * py - 3 * pz
  1133. for i in range(4):
  1134. for j in range(4):
  1135. assert (A(i0) * B(-i1))[i, j] == [E, px, py, pz][i] * [0, -1, -2, -3][j]
  1136. # test contraction on the alternative Minkowski metric: [-1, 1, 1, 1]
  1137. assert (C(mu0) * C(-mu0)).data == -E ** 2 + px ** 2 + py ** 2 + pz ** 2
  1138. contrexp = A(i0) * AB(i1, -i0)
  1139. assert A(i0).rank == 1
  1140. assert AB(i1, -i0).rank == 2
  1141. assert contrexp.rank == 1
  1142. for i in range(4):
  1143. assert contrexp[i] == [E, px, py, pz][i]
  1144. def test_valued_tensor_self_contraction():
  1145. with warns_deprecated_sympy():
  1146. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1147. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1148. assert AB(i0, -i0).data == 4
  1149. assert BA(i0, -i0).data == 2
  1150. def test_valued_tensor_pow():
  1151. with warns_deprecated_sympy():
  1152. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1153. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1154. assert C**2 == -E**2 + px**2 + py**2 + pz**2
  1155. assert C**1 == sqrt(-E**2 + px**2 + py**2 + pz**2)
  1156. assert C(mu0)**2 == C**2
  1157. assert C(mu0)**1 == C**1
  1158. def test_valued_tensor_expressions():
  1159. with warns_deprecated_sympy():
  1160. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1161. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1162. x1, x2, x3 = symbols('x1:4')
  1163. # test coefficient in contraction:
  1164. rank2coeff = x1 * A(i3) * B(i2)
  1165. assert rank2coeff[1, 1] == x1 * px
  1166. assert rank2coeff[3, 3] == 3 * pz * x1
  1167. coeff_expr = ((x1 * A(i4)) * (B(-i4) / x2)).data
  1168. assert coeff_expr.expand() == -px*x1/x2 - 2*py*x1/x2 - 3*pz*x1/x2
  1169. add_expr = A(i0) + B(i0)
  1170. assert add_expr[0] == E
  1171. assert add_expr[1] == px + 1
  1172. assert add_expr[2] == py + 2
  1173. assert add_expr[3] == pz + 3
  1174. sub_expr = A(i0) - B(i0)
  1175. assert sub_expr[0] == E
  1176. assert sub_expr[1] == px - 1
  1177. assert sub_expr[2] == py - 2
  1178. assert sub_expr[3] == pz - 3
  1179. assert (add_expr * B(-i0)).data == -px - 2*py - 3*pz - 14
  1180. expr1 = x1*A(i0) + x2*B(i0)
  1181. expr2 = expr1 * B(i1) * (-4)
  1182. expr3 = expr2 + 3*x3*AB(i0, i1)
  1183. expr4 = expr3 / 2
  1184. assert expr4 * 2 == expr3
  1185. expr5 = (expr4 * BA(-i1, -i0))
  1186. assert expr5.data.expand() == 28*E*x1 + 12*px*x1 + 20*py*x1 + 28*pz*x1 + 136*x2 + 3*x3
  1187. def test_valued_tensor_add_scalar():
  1188. with warns_deprecated_sympy():
  1189. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1190. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1191. # one scalar summand after the contracted tensor
  1192. expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2)
  1193. assert expr1.data == 0
  1194. # multiple scalar summands in front of the contracted tensor
  1195. expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0)
  1196. assert expr2.data == 0
  1197. # multiple scalar summands after the contracted tensor
  1198. expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2
  1199. assert expr3.data == 0
  1200. # multiple scalar summands and multiple tensors
  1201. expr4 = C(mu0)*C(-mu0) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0)
  1202. assert expr4.data == 0
  1203. def test_noncommuting_components():
  1204. with warns_deprecated_sympy():
  1205. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1206. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1207. euclid = TensorIndexType('Euclidean')
  1208. euclid.data = [1, 1]
  1209. i1, i2, i3 = tensor_indices('i1:4', euclid)
  1210. a, b, c, d = symbols('a b c d', commutative=False)
  1211. V1 = TensorHead('V1', [euclid]*2)
  1212. V1.data = [[a, b], (c, d)]
  1213. V2 = TensorHead('V2', [euclid]*2)
  1214. V2.data = [[a, c], [b, d]]
  1215. vtp = V1(i1, i2) * V2(-i2, -i1)
  1216. assert vtp.data == a**2 + b**2 + c**2 + d**2
  1217. assert vtp.data != a**2 + 2*b*c + d**2
  1218. vtp2 = V1(i1, i2)*V1(-i2, -i1)
  1219. assert vtp2.data == a**2 + b*c + c*b + d**2
  1220. assert vtp2.data != a**2 + 2*b*c + d**2
  1221. Vc = (b * V1(i1, -i1)).data
  1222. assert Vc.expand() == b * a + b * d
  1223. def test_valued_non_diagonal_metric():
  1224. with warns_deprecated_sympy():
  1225. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1226. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1227. mmatrix = Matrix(ndm_matrix)
  1228. assert (NA(n0)*NA(-n0)).data == (NA(n0).get_matrix().T * mmatrix * NA(n0).get_matrix())[0, 0]
  1229. def test_valued_assign_numpy_ndarray():
  1230. with warns_deprecated_sympy():
  1231. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1232. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1233. # this is needed to make sure that a numpy.ndarray can be assigned to a
  1234. # tensor.
  1235. arr = [E+1, px-1, py, pz]
  1236. A.data = Array(arr)
  1237. for i in range(4):
  1238. assert A(i0).data[i] == arr[i]
  1239. qx, qy, qz = symbols('qx qy qz')
  1240. A(-i0).data = Array([E, qx, qy, qz])
  1241. for i in range(4):
  1242. assert A(i0).data[i] == [E, -qx, -qy, -qz][i]
  1243. assert A.data[i] == [E, -qx, -qy, -qz][i]
  1244. # test on multi-indexed tensors.
  1245. random_4x4_data = [[(i**3-3*i**2)%(j+7) for i in range(4)] for j in range(4)]
  1246. AB(-i0, -i1).data = random_4x4_data
  1247. for i in range(4):
  1248. for j in range(4):
  1249. assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1)
  1250. assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1)
  1251. assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)
  1252. assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]
  1253. AB(-i0, i1).data = random_4x4_data
  1254. for i in range(4):
  1255. for j in range(4):
  1256. assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)
  1257. assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]
  1258. assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1)
  1259. assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1)
  1260. def test_valued_metric_inverse():
  1261. with warns_deprecated_sympy():
  1262. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1263. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1264. # let's assign some fancy matrix, just to verify it:
  1265. # (this has no physical sense, it's just testing sympy);
  1266. # it is symmetrical:
  1267. md = [[2, 2, 2, 1], [2, 3, 1, 0], [2, 1, 2, 3], [1, 0, 3, 2]]
  1268. Lorentz.data = md
  1269. m = Matrix(md)
  1270. metric = Lorentz.metric
  1271. minv = m.inv()
  1272. meye = eye(4)
  1273. # the Kronecker Delta:
  1274. KD = Lorentz.get_kronecker_delta()
  1275. for i in range(4):
  1276. for j in range(4):
  1277. assert metric(i0, i1).data[i, j] == m[i, j]
  1278. assert metric(-i0, -i1).data[i, j] == minv[i, j]
  1279. assert metric(i0, -i1).data[i, j] == meye[i, j]
  1280. assert metric(-i0, i1).data[i, j] == meye[i, j]
  1281. assert metric(i0, i1)[i, j] == m[i, j]
  1282. assert metric(-i0, -i1)[i, j] == minv[i, j]
  1283. assert metric(i0, -i1)[i, j] == meye[i, j]
  1284. assert metric(-i0, i1)[i, j] == meye[i, j]
  1285. assert KD(i0, -i1)[i, j] == meye[i, j]
  1286. def test_valued_canon_bp_swapaxes():
  1287. with warns_deprecated_sympy():
  1288. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1289. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1290. e1 = A(i1)*A(i0)
  1291. e2 = e1.canon_bp()
  1292. assert e2 == A(i0)*A(i1)
  1293. for i in range(4):
  1294. for j in range(4):
  1295. assert e1[i, j] == e2[j, i]
  1296. o1 = B(i2)*A(i1)*B(i0)
  1297. o2 = o1.canon_bp()
  1298. for i in range(4):
  1299. for j in range(4):
  1300. for k in range(4):
  1301. assert o1[i, j, k] == o2[j, i, k]
  1302. def test_valued_components_with_wrong_symmetry():
  1303. with warns_deprecated_sympy():
  1304. IT = TensorIndexType('IT', dim=3)
  1305. i0, i1, i2, i3 = tensor_indices('i0:4', IT)
  1306. IT.data = [1, 1, 1]
  1307. A_nosym = TensorHead('A', [IT]*2)
  1308. A_sym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(2))
  1309. A_antisym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(-2))
  1310. mat_nosym = Matrix([[1,2,3],[4,5,6],[7,8,9]])
  1311. mat_sym = mat_nosym + mat_nosym.T
  1312. mat_antisym = mat_nosym - mat_nosym.T
  1313. A_nosym.data = mat_nosym
  1314. A_nosym.data = mat_sym
  1315. A_nosym.data = mat_antisym
  1316. def assign(A, dat):
  1317. A.data = dat
  1318. A_sym.data = mat_sym
  1319. raises(ValueError, lambda: assign(A_sym, mat_nosym))
  1320. raises(ValueError, lambda: assign(A_sym, mat_antisym))
  1321. A_antisym.data = mat_antisym
  1322. raises(ValueError, lambda: assign(A_antisym, mat_sym))
  1323. raises(ValueError, lambda: assign(A_antisym, mat_nosym))
  1324. A_sym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
  1325. A_antisym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
  1326. def test_issue_10972_TensMul_data():
  1327. with warns_deprecated_sympy():
  1328. Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2)
  1329. Lorentz.data = [-1, 1]
  1330. mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta',
  1331. Lorentz)
  1332. u = TensorHead('u', [Lorentz])
  1333. u.data = [1, 0]
  1334. F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  1335. F.data = [[0, 1],
  1336. [-1, 0]]
  1337. mul_1 = F(mu, alpha) * u(-alpha) * F(nu, beta) * u(-beta)
  1338. assert (mul_1.data == Array([[0, 0], [0, 1]]))
  1339. mul_2 = F(mu, alpha) * F(nu, beta) * u(-alpha) * u(-beta)
  1340. assert (mul_2.data == mul_1.data)
  1341. assert ((mul_1 + mul_1).data == 2 * mul_1.data)
  1342. def test_TensMul_data():
  1343. with warns_deprecated_sympy():
  1344. Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='L', dim=4)
  1345. Lorentz.data = [-1, 1, 1, 1]
  1346. mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta',
  1347. Lorentz)
  1348. u = TensorHead('u', [Lorentz])
  1349. u.data = [1, 0, 0, 0]
  1350. F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  1351. Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
  1352. F.data = [
  1353. [0, Ex, Ey, Ez],
  1354. [-Ex, 0, Bz, -By],
  1355. [-Ey, -Bz, 0, Bx],
  1356. [-Ez, By, -Bx, 0]]
  1357. E = F(mu, nu) * u(-nu)
  1358. assert ((E(mu) * E(nu)).data ==
  1359. Array([[0, 0, 0, 0],
  1360. [0, Ex ** 2, Ex * Ey, Ex * Ez],
  1361. [0, Ex * Ey, Ey ** 2, Ey * Ez],
  1362. [0, Ex * Ez, Ey * Ez, Ez ** 2]])
  1363. )
  1364. assert ((E(mu) * E(nu)).canon_bp().data == (E(mu) * E(nu)).data)
  1365. assert ((F(mu, alpha) * F(beta, nu) * u(-alpha) * u(-beta)).data ==
  1366. - (E(mu) * E(nu)).data
  1367. )
  1368. assert ((F(alpha, mu) * F(beta, nu) * u(-alpha) * u(-beta)).data ==
  1369. (E(mu) * E(nu)).data
  1370. )
  1371. g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  1372. g.data = Lorentz.data
  1373. # tensor 'perp' is orthogonal to vector 'u'
  1374. perp = u(mu) * u(nu) + g(mu, nu)
  1375. mul_1 = u(-mu) * perp(mu, nu)
  1376. assert (mul_1.data == Array([0, 0, 0, 0]))
  1377. mul_2 = u(-mu) * perp(mu, alpha) * perp(nu, beta)
  1378. assert (mul_2.data == Array.zeros(4, 4, 4))
  1379. Fperp = perp(mu, alpha) * perp(nu, beta) * F(-alpha, -beta)
  1380. assert (Fperp.data[0, :] == Array([0, 0, 0, 0]))
  1381. assert (Fperp.data[:, 0] == Array([0, 0, 0, 0]))
  1382. mul_3 = u(-mu) * Fperp(mu, nu)
  1383. assert (mul_3.data == Array([0, 0, 0, 0]))
  1384. # Test the deleter
  1385. del g.data
  1386. def test_issue_11020_TensAdd_data():
  1387. with warns_deprecated_sympy():
  1388. Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2)
  1389. Lorentz.data = [-1, 1]
  1390. a, b, c, d = tensor_indices('a, b, c, d', Lorentz)
  1391. i0, i1 = tensor_indices('i_0:2', Lorentz)
  1392. # metric tensor
  1393. g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  1394. g.data = Lorentz.data
  1395. u = TensorHead('u', [Lorentz])
  1396. u.data = [1, 0]
  1397. add_1 = g(b, c) * g(d, i0) * u(-i0) - g(b, c) * u(d)
  1398. assert (add_1.data == Array.zeros(2, 2, 2))
  1399. # Now let us replace index `d` with `a`:
  1400. add_2 = g(b, c) * g(a, i0) * u(-i0) - g(b, c) * u(a)
  1401. assert (add_2.data == Array.zeros(2, 2, 2))
  1402. # some more tests
  1403. # perp is tensor orthogonal to u^\mu
  1404. perp = u(a) * u(b) + g(a, b)
  1405. mul_1 = u(-a) * perp(a, b)
  1406. assert (mul_1.data == Array([0, 0]))
  1407. mul_2 = u(-c) * perp(c, a) * perp(d, b)
  1408. assert (mul_2.data == Array.zeros(2, 2, 2))
  1409. def test_index_iteration():
  1410. L = TensorIndexType("Lorentz", dummy_name="L")
  1411. i0, i1, i2, i3, i4 = tensor_indices('i0:5', L)
  1412. L0 = tensor_indices('L_0', L)
  1413. L1 = tensor_indices('L_1', L)
  1414. A = TensorHead("A", [L, L])
  1415. B = TensorHead("B", [L, L], TensorSymmetry.fully_symmetric(2))
  1416. e1 = A(i0,i2)
  1417. e2 = A(i0,-i0)
  1418. e3 = A(i0,i1)*B(i2,i3)
  1419. e4 = A(i0,i1)*B(i2,-i1)
  1420. e5 = A(i0,i1)*B(-i0,-i1)
  1421. e6 = e1 + e4
  1422. assert list(e1._iterate_free_indices) == [(i0, (1, 0)), (i2, (1, 1))]
  1423. assert list(e1._iterate_dummy_indices) == []
  1424. assert list(e1._iterate_indices) == [(i0, (1, 0)), (i2, (1, 1))]
  1425. assert list(e2._iterate_free_indices) == []
  1426. assert list(e2._iterate_dummy_indices) == [(L0, (1, 0)), (-L0, (1, 1))]
  1427. assert list(e2._iterate_indices) == [(L0, (1, 0)), (-L0, (1, 1))]
  1428. assert list(e3._iterate_free_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))]
  1429. assert list(e3._iterate_dummy_indices) == []
  1430. assert list(e3._iterate_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))]
  1431. assert list(e4._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (1, 1, 0))]
  1432. assert list(e4._iterate_dummy_indices) == [(L0, (0, 1, 1)), (-L0, (1, 1, 1))]
  1433. assert list(e4._iterate_indices) == [(i0, (0, 1, 0)), (L0, (0, 1, 1)), (i2, (1, 1, 0)), (-L0, (1, 1, 1))]
  1434. assert list(e5._iterate_free_indices) == []
  1435. assert list(e5._iterate_dummy_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))]
  1436. assert list(e5._iterate_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))]
  1437. assert list(e6._iterate_free_indices) == [(i0, (0, 0, 1, 0)), (i2, (0, 1, 1, 0)), (i0, (1, 1, 0)), (i2, (1, 1, 1))]
  1438. assert list(e6._iterate_dummy_indices) == [(L0, (0, 0, 1, 1)), (-L0, (0, 1, 1, 1))]
  1439. assert list(e6._iterate_indices) == [(i0, (0, 0, 1, 0)), (L0, (0, 0, 1, 1)), (i2, (0, 1, 1, 0)), (-L0, (0, 1, 1, 1)), (i0, (1, 1, 0)), (i2, (1, 1, 1))]
  1440. assert e1.get_indices() == [i0, i2]
  1441. assert e1.get_free_indices() == [i0, i2]
  1442. assert e2.get_indices() == [L0, -L0]
  1443. assert e2.get_free_indices() == []
  1444. assert e3.get_indices() == [i0, i1, i2, i3]
  1445. assert e3.get_free_indices() == [i0, i1, i2, i3]
  1446. assert e4.get_indices() == [i0, L0, i2, -L0]
  1447. assert e4.get_free_indices() == [i0, i2]
  1448. assert e5.get_indices() == [L0, L1, -L0, -L1]
  1449. assert e5.get_free_indices() == []
  1450. def test_tensor_expand():
  1451. L = TensorIndexType("L")
  1452. i, j, k = tensor_indices("i j k", L)
  1453. L_0 = TensorIndex("L_0", L)
  1454. A, B, C, D = tensor_heads("A B C D", [L])
  1455. assert isinstance(Add(A(i), B(i)), TensAdd)
  1456. assert isinstance(expand(A(i)+B(i)), TensAdd)
  1457. expr = A(i)*(A(-i)+B(-i))
  1458. assert expr.args == (A(L_0), A(-L_0) + B(-L_0))
  1459. assert expr != A(i)*A(-i) + A(i)*B(-i)
  1460. assert expr.expand() == A(i)*A(-i) + A(i)*B(-i)
  1461. assert str(expr) == "A(L_0)*(A(-L_0) + B(-L_0))"
  1462. expr = A(i)*A(j) + A(i)*B(j)
  1463. assert str(expr) == "A(i)*A(j) + A(i)*B(j)"
  1464. expr = A(-i)*(A(i)*A(j) + A(i)*B(j)*C(k)*C(-k))
  1465. assert expr != A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k)
  1466. assert expr.expand() == A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k)
  1467. assert str(expr) == "A(-L_0)*(A(L_0)*A(j) + A(L_0)*B(j)*C(L_1)*C(-L_1))"
  1468. assert str(expr.canon_bp()) == 'A(j)*A(L_0)*A(-L_0) + A(L_0)*A(-L_0)*B(j)*C(L_1)*C(-L_1)'
  1469. expr = A(-i)*(2*A(i)*A(j) + A(i)*B(j))
  1470. assert expr.expand() == 2*A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)
  1471. expr = 2*A(i)*A(-i)
  1472. assert expr.coeff == 2
  1473. expr = A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))
  1474. assert str(expr) == "A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))"
  1475. assert str(expr.expand()) == "A(i)*B(j)*C(k) + A(i)*C(j)*A(k) + A(i)*C(j)*D(k)"
  1476. assert isinstance(TensMul(3), TensMul)
  1477. tm = TensMul(3).doit()
  1478. assert tm == 3
  1479. assert isinstance(tm, Integer)
  1480. p1 = B(j)*B(-j) + B(j)*C(-j)
  1481. p2 = C(-i)*p1
  1482. p3 = A(i)*p2
  1483. assert p3.expand() == A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j)
  1484. expr = A(i)*(B(-i) + C(-i)*(B(j)*B(-j) + B(j)*C(-j)))
  1485. assert expr.expand() == A(i)*B(-i) + A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j)
  1486. expr = C(-i)*(B(j)*B(-j) + B(j)*C(-j))
  1487. assert expr.expand() == C(-i)*B(j)*B(-j) + C(-i)*B(j)*C(-j)
  1488. def test_tensor_alternative_construction():
  1489. L = TensorIndexType("L")
  1490. i0, i1, i2, i3 = tensor_indices('i0:4', L)
  1491. A = TensorHead("A", [L])
  1492. x, y = symbols("x y")
  1493. assert A(i0) == A(Symbol("i0"))
  1494. assert A(-i0) == A(-Symbol("i0"))
  1495. raises(TypeError, lambda: A(x+y))
  1496. raises(ValueError, lambda: A(2*x))
  1497. def test_tensor_replacement():
  1498. L = TensorIndexType("L")
  1499. L2 = TensorIndexType("L2", dim=2)
  1500. i, j, k, l = tensor_indices("i j k l", L)
  1501. A, B, C, D = tensor_heads("A B C D", [L])
  1502. H = TensorHead("H", [L, L])
  1503. K = TensorHead("K", [L]*4)
  1504. expr = H(i, j)
  1505. repl = {H(i,-j): [[1,2],[3,4]], L: diag(1, -1)}
  1506. assert expr._extract_data(repl) == ([i, j], Array([[1, -2], [3, -4]]))
  1507. assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]])
  1508. assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, -2], [3, -4]])
  1509. assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, 2], [3, 4]])
  1510. assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, -2], [-3, 4]])
  1511. assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, 2], [-3, -4]])
  1512. assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [-2, -4]])
  1513. assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [-2, 4]])
  1514. assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [2, 4]])
  1515. assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [2, -4]])
  1516. # Test stability of optional parameter 'indices'
  1517. assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]])
  1518. expr = H(i,j)
  1519. repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)}
  1520. assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]]))
  1521. assert expr.replace_with_arrays(repl) == Array([[1, 2], [3, 4]])
  1522. assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, 2], [3, 4]])
  1523. assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, -2], [3, -4]])
  1524. assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, 2], [-3, -4]])
  1525. assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, -2], [-3, 4]])
  1526. assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [2, 4]])
  1527. assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [2, -4]])
  1528. assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [-2, -4]])
  1529. assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [-2, 4]])
  1530. # Not the same indices:
  1531. expr = H(i,k)
  1532. repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)}
  1533. assert expr._extract_data(repl) == ([i, k], Array([[1, 2], [3, 4]]))
  1534. expr = A(i)*A(-i)
  1535. repl = {A(i): [1,2], L: diag(1, -1)}
  1536. assert expr._extract_data(repl) == ([], -3)
  1537. assert expr.replace_with_arrays(repl, []) == -3
  1538. expr = K(i, j, -j, k)*A(-i)*A(-k)
  1539. repl = {A(i): [1, 2], K(i,j,k,l): Array([1]*2**4).reshape(2,2,2,2), L: diag(1, -1)}
  1540. assert expr._extract_data(repl)
  1541. expr = H(j, k)
  1542. repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)}
  1543. raises(ValueError, lambda: expr._extract_data(repl))
  1544. expr = A(i)
  1545. repl = {B(i): [1, 2]}
  1546. raises(ValueError, lambda: expr._extract_data(repl))
  1547. expr = A(i)
  1548. repl = {A(i): [[1, 2], [3, 4]]}
  1549. raises(ValueError, lambda: expr._extract_data(repl))
  1550. # TensAdd:
  1551. expr = A(k)*H(i, j) + B(k)*H(i, j)
  1552. repl = {A(k): [1], B(k): [1], H(i, j): [[1, 2],[3,4]], L:diag(1,1)}
  1553. assert expr._extract_data(repl) == ([k, i, j], Array([[[2, 4], [6, 8]]]))
  1554. assert expr.replace_with_arrays(repl, [k, i, j]) == Array([[[2, 4], [6, 8]]])
  1555. assert expr.replace_with_arrays(repl, [k, j, i]) == Array([[[2, 6], [4, 8]]])
  1556. expr = A(k)*A(-k) + 100
  1557. repl = {A(k): [2, 3], L: diag(1, 1)}
  1558. assert expr.replace_with_arrays(repl, []) == 113
  1559. ## Symmetrization:
  1560. expr = H(i, j) + H(j, i)
  1561. repl = {H(i, j): [[1, 2], [3, 4]]}
  1562. assert expr._extract_data(repl) == ([i, j], Array([[2, 5], [5, 8]]))
  1563. assert expr.replace_with_arrays(repl, [i, j]) == Array([[2, 5], [5, 8]])
  1564. assert expr.replace_with_arrays(repl, [j, i]) == Array([[2, 5], [5, 8]])
  1565. ## Anti-symmetrization:
  1566. expr = H(i, j) - H(j, i)
  1567. repl = {H(i, j): [[1, 2], [3, 4]]}
  1568. assert expr.replace_with_arrays(repl, [i, j]) == Array([[0, -1], [1, 0]])
  1569. assert expr.replace_with_arrays(repl, [j, i]) == Array([[0, 1], [-1, 0]])
  1570. # Tensors with contractions in replacements:
  1571. expr = K(i, j, k, -k)
  1572. repl = {K(i, j, k, -k): [[1, 2], [3, 4]]}
  1573. assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]]))
  1574. expr = H(i, -i)
  1575. repl = {H(i, -i): 42}
  1576. assert expr._extract_data(repl) == ([], 42)
  1577. expr = H(i, -i)
  1578. repl = {
  1579. H(-i, -j): Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]),
  1580. L: Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]),
  1581. }
  1582. assert expr._extract_data(repl) == ([], 4)
  1583. # Replace with array, raise exception if indices are not compatible:
  1584. expr = A(i)*A(j)
  1585. repl = {A(i): [1, 2]}
  1586. raises(ValueError, lambda: expr.replace_with_arrays(repl, [j]))
  1587. # Raise exception if array dimension is not compatible:
  1588. expr = A(i)
  1589. repl = {A(i): [[1, 2]]}
  1590. raises(ValueError, lambda: expr.replace_with_arrays(repl, [i]))
  1591. # TensorIndexType with dimension, wrong dimension in replacement array:
  1592. u1, u2, u3 = tensor_indices("u1:4", L2)
  1593. U = TensorHead("U", [L2])
  1594. expr = U(u1)*U(-u2)
  1595. repl = {U(u1): [[1]]}
  1596. raises(ValueError, lambda: expr.replace_with_arrays(repl, [u1, -u2]))
  1597. def test_rewrite_tensor_to_Indexed():
  1598. L = TensorIndexType("L", dim=4)
  1599. A = TensorHead("A", [L]*4)
  1600. B = TensorHead("B", [L])
  1601. i0, i1, i2, i3 = symbols("i0:4")
  1602. L_0, L_1 = symbols("L_0:2")
  1603. a1 = A(i0, i1, i2, i3)
  1604. assert a1.rewrite(Indexed) == Indexed(Symbol("A"), i0, i1, i2, i3)
  1605. a2 = A(i0, -i0, i2, i3)
  1606. assert a2.rewrite(Indexed) == Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3))
  1607. a3 = a2 + A(i2, i3, i0, -i0)
  1608. assert a3.rewrite(Indexed) == \
  1609. Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) +\
  1610. Sum(Indexed(Symbol("A"), i2, i3, L_0, L_0), (L_0, 0, 3))
  1611. b1 = B(-i0)*a1
  1612. assert b1.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_0)*Indexed(Symbol("A"), L_0, i1, i2, i3), (L_0, 0, 3))
  1613. b2 = B(-i3)*a2
  1614. assert b2.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_1)*Indexed(Symbol("A"), L_0, L_0, i2, L_1), (L_0, 0, 3), (L_1, 0, 3))
  1615. def test_tensorsymmetry():
  1616. with warns_deprecated_sympy():
  1617. tensorsymmetry([1]*2)
  1618. def test_tensorhead():
  1619. with warns_deprecated_sympy():
  1620. tensorhead('A', [])
  1621. def test_TensorType():
  1622. with warns_deprecated_sympy():
  1623. sym2 = TensorSymmetry.fully_symmetric(2)
  1624. Lorentz = TensorIndexType('Lorentz')
  1625. S2 = TensorType([Lorentz]*2, sym2)
  1626. assert isinstance(S2, TensorType)
  1627. def test_dummy_fmt():
  1628. with warns_deprecated_sympy():
  1629. TensorIndexType('Lorentz', dummy_fmt='L')