import logging import tempfile from enum import Enum from pathlib import Path import numpy import onnx from onnx import external_data_helper from onnx import onnx_pb as onnx_proto from onnxruntime import GraphOptimizationLevel, InferenceSession, SessionOptions __producer__ = "onnx.quantize" __version__ = "0.1.0" onnx_domain = "ai.onnx" ms_domain = "com.microsoft" QUANT_OP_NAME = "QuantizeLinear" QUANT_INPUT_SUFFIX = "_QuantizeLinear_Input" DEQUANT_OP_NAME = "DequantizeLinear" DEQUANT_OUTPUT_SUFFIX = "_DequantizeLinear_Output" TENSOR_NAME_QUANT_SUFFIX = "_quantized" type_to_name = { 1: "FLOAT", 2: "UINT8", 3: "INT8", 4: "UINT16", 5: "INT16", 6: "INT32", 7: "INT64", 8: "STRING", 9: "BOOL", 10: "FLOAT16", 11: "DOUBLE", 12: "UINT32", 13: "UINT64", 14: "COMPLEX64", 15: "COMPLEX128", } # Quantization mode # IntegerOps: Use IntegerOps in quantized model. Only ConvInteger and MatMulInteger ops are supported now. # QLinearOps: Use QLinearOps in quantized model. Only QLinearConv and QLinearMatMul ops are supported now. class QuantizationMode(Enum): IntegerOps = 0 QLinearOps = 1 def __str__(self): return self.name @staticmethod def from_string(mode): try: return QuantizationMode[mode] except KeyError: raise ValueError() class QuantizedValueType(Enum): Input = 0 Initializer = 1 def __str__(self): return self.name @staticmethod def from_string(v): try: return QuantizedValueType[v] except KeyError: raise ValueError() class QuantType(Enum): QInt8 = 0 QUInt8 = 1 def __str__(self): return self.name @staticmethod def from_string(t): try: return QuantType[t] except KeyError: raise ValueError() class QuantFormat(Enum): QOperator = 0 QDQ = 1 def __str__(self): return self.name @staticmethod def from_string(format): try: return QuantFormat[format] except KeyError: raise ValueError() ONNX_TYPE_TO_NP_TYPE = { onnx_proto.TensorProto.INT8: numpy.dtype("int8"), onnx_proto.TensorProto.UINT8: numpy.dtype("uint8"), } def quantize_nparray(qType, arr, scale, zero_point, low=None, high=None): assert ( qType in ONNX_TYPE_TO_NP_TYPE ), "Unexpected data type {} requested. Only INT8 and UINT8 are supported.".format(qType) dtype = ONNX_TYPE_TO_NP_TYPE[qType] cliplow = max(0 if dtype == numpy.uint8 else -127, -127 if low is None else low) cliphigh = min(255 if dtype == numpy.uint8 else 127, 255 if high is None else high) arr_fp32 = numpy.asarray((arr.astype(numpy.float32) / scale).round() + zero_point) numpy.clip(arr_fp32, cliplow, cliphigh, out=arr_fp32) return arr_fp32.astype(dtype) def compute_scale_zp(rmin, rmax, qmin, qmax, symmetric=False): """Calculate the scale s and zero point z for the quantization relation r = s(q-z), where r are the original values and q are the corresponding quantized values. r and z are calculated such that every value within [rmin,rmax] has an approximate representation within [qmin,qmax]. In addition, qmin <= z <= qmax is enforced. If the symmetric flag is set to True, the interval [rmin,rmax] is symmetrized to [-absmax, +absmax], where absmax = max(abs(rmin), abs(rmax)). :parameter rmin: minimum value of r :parameter rmax: maximum value of r :parameter qmin: minimum value representable by the target quantization data type :parameter qmax: maximum value representable by the target quantization data type :return: zero and scale [z, s] """ if qmin > 0 or qmax < 0: raise ValueError(f"qmin and qmax must meet requirement: qmin <= 0 <= qmax while qmin:{qmin}, qmmax:{qmax}") # Adjust rmin and rmax such that 0 is included in the range. This is # required to make sure zero can be represented by the quantization data # type (i.e. to make sure qmin <= zero_point <= qmax) rmin = min(rmin, 0) rmax = max(rmax, 0) if symmetric: absmax = max(abs(rmin), abs(rmax)) rmin = -absmax rmax = +absmax scale = (rmax - rmin) / float(qmax - qmin) if scale < numpy.finfo(numpy.float32).tiny: scale = 1.0 zero_point = 0 else: zero_point = round(qmin - rmin / scale) return [zero_point, scale] def quantize_data(data, qType, symmetric, reduce_range=False): """ :param data: data to quantize :param qType: data type to quantize to. Supported types UINT8 and INT8 :param symmetric: whether symmetric quantization is used or not. This is applied to INT8. :return: minimum, maximum, zero point, scale, and quantized weights To pack weights, we compute a linear transformation - when data `type == uint8` mode, from `[rmin, rmax]` -> :math:`[0, 2^{b-1}]` and - when data `type == int8`, from `[-m , m]` -> :math:`[-(2^{b-1}-1), 2^{b-1}-1]` where `m = max(abs(rmin), abs(rmax))` and add necessary intermediate nodes to trasnform quantized weight to full weight using the equation :math:`r = S(q-z)`, where - *r*: real original value - *q*: quantized value - *S*: scale - *z*: zero point """ rmin = 0 rmax = 0 zero_point = 0 scale = 1.0 if len(data): rmin = min(data) rmax = max(data) qmin, qmax = get_qmin_qmax_for_qType(qType, reduce_range, symmetric=symmetric) zero_point, scale = compute_scale_zp(rmin, rmax, qmin, qmax, symmetric) quantized_data = quantize_nparray(qType, numpy.asarray(data), scale, zero_point) return rmin, rmax, zero_point, scale, quantized_data def get_qmin_qmax_for_qType(qType, reduce_range=False, symmetric=False): """ Return qmin and qmax, the minimum and maximum value representable by the given qType :parameter qType: onnx.onnx_pb.TensorProto.UINT8 or onnx.onnx_pb.TensorProto.UINT8 :return: qmin, qmax """ if qType == onnx_proto.TensorProto.UINT8: (qmin, qmax) = (0, 127) if reduce_range else (0, 255) elif qType == onnx_proto.TensorProto.INT8: if symmetric: (qmin, qmax) = (-64, 64) if reduce_range else (-127, 127) else: (qmin, qmax) = (-64, 64) if reduce_range else (-128, 127) else: raise ValueError("Unexpected data type {} requested. Only INT8 and UINT8 are supported.".format(qType)) return qmin, qmax def get_qrange_for_qType(qType, reduce_range=False, symmetric=False): """ Helper function to get the quantization range for a type. parameter qType: quantization type. return: quantization range. """ qmin, qmax = get_qmin_qmax_for_qType(qType, reduce_range, symmetric=symmetric) return qmax - qmin class QuantizedInitializer: """ Represents a linearly quantized weight input from ONNX operators """ def __init__( self, name, initializer, rmins, rmaxs, zero_points, scales, data=[], quantized_data=[], axis=None, ): self.name = name self.initializer = initializer # TensorProto initializer in ONNX graph self.rmins = rmins # List of minimum range for each axis self.rmaxs = rmaxs # List of maximum range for each axis # 1D tensor of zero points computed for each axis. scalar if axis is empty self.zero_points = zero_points self.scales = scales # 1D tensor of scales computed for each axis. scalar if axis is empty self.data = data # original data from initializer TensorProto self.quantized_data = quantized_data # weight-packed data from data # Scalar to specify which dimension in the initializer to weight pack. self.axis = axis # If empty, single zero point and scales computed from a single rmin and rmax class QuantizedValue: """ Represents a linearly quantized value (input\output\intializer) """ def __init__( self, name, new_quantized_name, scale_name, zero_point_name, quantized_value_type, axis=None, ): self.original_name = name self.q_name = new_quantized_name self.scale_name = scale_name self.zp_name = zero_point_name self.value_type = quantized_value_type self.axis = axis class BiasToQuantize: """ Represents a bias to be quantized """ def __init__(self, bias_name, input_name, weight_name): self.bias_name = bias_name self.input_name = input_name self.weight_name = weight_name def attribute_to_kwarg(attribute): """ Convert attribute to kwarg format for use with onnx.helper.make_node. :parameter attribute: attribute in AttributeProto format. :return: attribute in {key: value} format. """ if attribute.type == 0: raise ValueError("attribute {} does not have type specified.".format(attribute.name)) # Based on attribute type definitions from AttributeProto # definition in https://github.com/onnx/onnx/blob/main/onnx/onnx.proto if attribute.type == 1: value = attribute.f elif attribute.type == 2: value = attribute.i elif attribute.type == 3: value = attribute.s elif attribute.type == 4: value = attribute.t elif attribute.type == 5: value = attribute.g elif attribute.type == 6: value = attribute.floats elif attribute.type == 7: value = attribute.ints elif attribute.type == 8: value = attribute.strings elif attribute.type == 9: value = attribute.tensors elif attribute.type == 10: value = attribute.graphs else: raise ValueError("attribute {} has unsupported type {}.".format(attribute.name, attribute.type)) return {attribute.name: value} def find_by_name(item_name, item_list): """ Helper function to find item by name in a list. parameter item_name: name of the item. parameter item_list: list of items. return: item if found. None otherwise. """ items = [item for item in item_list if item.name == item_name] return items[0] if len(items) > 0 else None def get_elem_index(elem_name, elem_list): """ Helper function to return index of an item in a node list """ elem_idx = -1 for i in range(0, len(elem_list)): if elem_list[i] == elem_name: elem_idx = i return elem_idx def get_mul_node(inputs, output, name): """ Helper function to create a Mul node. parameter inputs: list of input names. parameter output: output name. parameter name: name of the node. return: Mul node in NodeProto format. """ return onnx.helper.make_node("Mul", inputs, [output], name) def generate_identified_filename(filename: Path, identifier: str) -> Path: """ Helper function to generate a identifiable filepath by concatenating the given identifier as a suffix. """ return filename.parent.joinpath(filename.stem + identifier + filename.suffix) def apply_plot(hist, hist_edges): import sys import matplotlib.pyplot as plt import numpy numpy.set_printoptions(threshold=sys.maxsize) print("Histogram:") print(hist) print("Histogram Edges:") print(hist_edges) plt.stairs(hist, hist_edges, fill=True) plt.xlabel("Tensor value") plt.ylabel("Counts") plt.title("Tensor value V.S. Counts") plt.show() def write_calibration_table(calibration_cache): """ Helper function to write calibration table to files. """ import json import flatbuffers import onnxruntime.quantization.CalTableFlatBuffers.KeyValue as KeyValue import onnxruntime.quantization.CalTableFlatBuffers.TrtTable as TrtTable logging.info("calibration cache: {}".format(calibration_cache)) with open("calibration.json", "w") as file: file.write(json.dumps(calibration_cache)) # use `json.loads` to do the reverse # Serialize data using FlatBuffers builder = flatbuffers.Builder(1024) key_value_list = [] for key in sorted(calibration_cache.keys()): values = calibration_cache[key] value = str(max(abs(values[0]), abs(values[1]))) flat_key = builder.CreateString(key) flat_value = builder.CreateString(value) KeyValue.KeyValueStart(builder) KeyValue.KeyValueAddKey(builder, flat_key) KeyValue.KeyValueAddValue(builder, flat_value) key_value = KeyValue.KeyValueEnd(builder) key_value_list.append(key_value) TrtTable.TrtTableStartDictVector(builder, len(key_value_list)) for key_value in key_value_list: builder.PrependUOffsetTRelative(key_value) main_dict = builder.EndVector() TrtTable.TrtTableStart(builder) TrtTable.TrtTableAddDict(builder, main_dict) cal_table = TrtTable.TrtTableEnd(builder) builder.Finish(cal_table) buf = builder.Output() with open("calibration.flatbuffers", "wb") as file: file.write(buf) # Deserialize data (for validation) if False: cal_table = TrtTable.TrtTable.GetRootAsTrtTable(buf, 0) dict_len = cal_table.DictLength() for i in range(dict_len): key_value = cal_table.Dict(i) logging.info(key_value.Key()) logging.info(key_value.Value()) # write plain text with open("calibration.cache", "w") as file: for key in sorted(calibration_cache.keys()): value = calibration_cache[key] s = key + " " + str(max(abs(value[0]), abs(value[1]))) file.write(s) file.write("\n") def smooth_distribution(p, eps=0.0001): """Given a discrete distribution (may have not been normalized to 1), smooth it by replacing zeros with eps multiplied by a scaling factor and taking the corresponding amount off the non-zero values. Ref: http://web.engr.illinois.edu/~hanj/cs412/bk3/KL-divergence.pdf https://github.com//apache/incubator-mxnet/blob/master/python/mxnet/contrib/quantization.py """ import numpy as np is_zeros = (p == 0).astype(np.float32) is_nonzeros = (p != 0).astype(np.float32) n_zeros = is_zeros.sum() n_nonzeros = p.size - n_zeros if not n_nonzeros: # raise ValueError('The discrete probability distribution is malformed. All entries are 0.') return -1 eps1 = eps * float(n_zeros) / float(n_nonzeros) assert eps1 < 1.0, "n_zeros=%d, n_nonzeros=%d, eps1=%f" % ( n_zeros, n_nonzeros, eps1, ) hist = p.astype(np.float32) hist += eps * is_zeros + (-eps1) * is_nonzeros assert (hist <= 0).sum() == 0 return hist def model_has_external_data(model_path: Path): model = onnx.load(model_path.as_posix(), load_external_data=False) for intializer in model.graph.initializer: if external_data_helper.uses_external_data(intializer): return True return False def optimize_model(model_path: Path, opt_model_path: Path): """ Generate model that applies graph optimization (constant folding, etc.) parameter model_path: path to the original onnx model parameter opt_model_path: path to the optimized onnx model :return: optimized onnx model """ sess_option = SessionOptions() sess_option.optimized_model_filepath = opt_model_path.as_posix() sess_option.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC _ = InferenceSession(model_path.as_posix(), sess_option, providers=["CPUExecutionProvider"]) def add_pre_process_metadata(model): """Tag the model that it went through quantization pre-processing""" metadata_props = {"onnx.quant.pre_process": "onnxruntime.quant"} if model.metadata_props: for prop in model.metadata_props: metadata_props.update({prop.key: prop.value}) onnx.helper.set_model_props(model, metadata_props) def model_has_pre_process_metadata(model): """Check the model whether it went through quantization pre-processing""" if model.metadata_props: for prop in model.metadata_props: if prop.key == "onnx.quant.pre_process" and prop.value == "onnxruntime.quant": return True return False def add_infer_metadata(model): metadata_props = {"onnx.infer": "onnxruntime.quant"} if model.metadata_props: for p in model.metadata_props: metadata_props.update({p.key: p.value}) onnx.helper.set_model_props(model, metadata_props) def model_has_infer_metadata(model): if model.metadata_props: for p in model.metadata_props: if p.key == "onnx.infer" and p.value == "onnxruntime.quant": return True return False def load_model_with_shape_infer(model_path: Path): inferred_model_path = generate_identified_filename(model_path, "-inferred") onnx.shape_inference.infer_shapes_path(str(model_path), str(inferred_model_path)) model = onnx.load(inferred_model_path.as_posix()) inferred_model_path.unlink() return model def load_model(model_path: Path, need_optimize: bool): with tempfile.TemporaryDirectory(prefix="ort.quant.") as quant_tmp_dir: if need_optimize and not model_has_external_data(model_path): opt_model_path = Path(quant_tmp_dir).joinpath("model.onnx") optimize_model(model_path, opt_model_path) model_path = opt_model_path model = load_model_with_shape_infer(model_path) add_infer_metadata(model) return model def save_and_reload_model(model): with tempfile.TemporaryDirectory(prefix="ort.quant.") as quant_tmp_dir: model_path = Path(quant_tmp_dir).joinpath("model.onnx") onnx.external_data_helper.convert_model_to_external_data(model, all_tensors_to_one_file=True) onnx.save_model(model, model_path.as_posix()) return load_model(model_path, False) def clone_model_with_shape_infer(model): if model_has_infer_metadata(model): cloned_model = onnx_proto.ModelProto() cloned_model.CopyFrom(model) else: cloned_model = save_and_reload_model(model) return cloned_model def tensor_proto_to_array(initializer): if initializer.data_type == onnx_proto.TensorProto.FLOAT: return onnx.numpy_helper.to_array(initializer) raise ValueError( f"Only float type is supported. Weights {initializer.name} is {type_to_name[initializer.data_type]}" ) def add_quant_suffix(tensor_name): return tensor_name + "_QuantizeLinear" def add_quant_input_suffix(tensor_name): return tensor_name + QUANT_INPUT_SUFFIX def add_quant_output_suffix(tensor_name): return tensor_name + "_QuantizeLinear_Output" def add_dequant_suffix(tensor_name): return tensor_name + "_DequantizeLinear" def add_dequant_input_suffix(tensor_name): return tensor_name + "_DequantizeLinear_Input" def add_dequant_output_suffix(tensor_name): return tensor_name + DEQUANT_OUTPUT_SUFFIX