# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import logging import tempfile from pathlib import Path from .calibrate import CalibrationDataReader, CalibrationMethod, create_calibrator from .onnx_quantizer import ONNXQuantizer from .qdq_quantizer import QDQQuantizer from .quant_utils import QuantFormat, QuantizationMode, QuantType, load_model, model_has_pre_process_metadata from .registry import IntegerOpsRegistry, QLinearOpsRegistry class QuantConfig: def __init__( self, activation_type=QuantType.QUInt8, weight_type=QuantType.QInt8, op_types_to_quantize=None, nodes_to_quantize=None, nodes_to_exclude=None, per_channel=False, reduce_range=False, optimize_model=True, use_external_data_format=False, ): """ This is the Base class for both Static and Dynamic Quantize Configuration Args: activation_type: quantization data type of activation. Please refer to https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection weight_type: quantization data type of weight. Please refer to https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection op_types_to_quantize: specify the types of operators to quantize, like ['Conv'] to quantize Conv only. It quantizes all supported operators by default. nodes_to_quantize: List of nodes names to quantize. When this list is not None only the nodes in this list are quantized. example: [ 'Conv__224', 'Conv__252' ] nodes_to_exclude: List of nodes names to exclude. The nodes in this list will be excluded from quantization when it is not None. per_channel: quantize weights per channel reduce_range: quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine, especially for per-channel mode optimize_model: Deprecating Soon! Optimize model before quantization. NOT recommended, optimization will change the computation graph, making debugging of quantization loss difficult. use_external_data_format: option used for large size (>2GB) model. Set to False by default. """ nodes_to_exclude = nodes_to_exclude or [] nodes_to_quantize = nodes_to_quantize or [] op_types_to_quantize = op_types_to_quantize or [] self.op_types_to_quantize = op_types_to_quantize self.per_channel = per_channel self.reduce_range = reduce_range self.weight_type = weight_type self.activation_type = activation_type self.nodes_to_quantize = nodes_to_quantize self.nodes_to_exclude = nodes_to_exclude self.optimize_model = optimize_model self.use_external_data_format = use_external_data_format class StaticQuantConfig(QuantConfig): def __init__( self, calibration_data_reader: CalibrationDataReader, calibrate_method=CalibrationMethod.MinMax, quant_format=QuantFormat.QDQ, activation_type=QuantType.QInt8, weight_type=QuantType.QInt8, op_types_to_quantize=None, nodes_to_quantize=None, nodes_to_exclude=None, per_channel=False, reduce_range=False, optimize_model=True, use_external_data_format=False, extra_options=None, ): """ This is the derived class for static Quantize Configuration Args: calibration_data_reader: a calibration data reader. It enumerates calibration data and generates inputs for the original model. calibrate_method: Current calibration methods supported are MinMax, Entropy and Percentile. quant_format: QuantFormat{QOperator, QDQ}. QOperator format quantizes the model with quantized operators directly. QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor. extra_options: key value pair dictionary for various options in different case. Current used: extra.Sigmoid.nnapi = True/False (Default is False) ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False). WeightSymmetric = True/False: symmetrize calibration data for weights (default is True). EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized. Dyanmic mode currently is supported. Will support more in future. ForceQuantizeNoInputCheck = True/False : By default, some latent operators like maxpool, transpose, do not quantize if their input is not quantized already. Setting to True to force such operator always quantize input and so generate quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude. MatMulConstBOnly = True/False: Default is False for static mode. If enabled, only MatMul with const B will be quantized. AddQDQPairToWeight = True/False : Default is False which quantizes floating-point weight and feeds it to solely inserted DeQuantizeLinear node. If True, it remains floating-point weight and inserts both QuantizeLinear/DeQuantizeLinear nodes to weight. OpTypesToExcludeOutputQuantization = list of op type : Default is []. If any op type is specified, it won't quantize the output of ops with this specific op types. DedicatedQDQPair = True/False : Default is False. When inserting QDQ pair, multiple nodes can share a single QDQ pair as their inputs. If True, it will create identical and dedicated QDQ pair for each node. QDQOpTypePerChannelSupportToAxis = dictionary : Default is {}. Set channel axis for specific op type, for example: {'MatMul': 1}, and it's effective only when per channel quantization is supported and per_channel is True. If specific op type supports per channel quantization but not explicitly specified with channel axis, default channel axis will be used. CalibTensorRangeSymmetric = True/False : Default is False. If enabled, the final range of tensor during calibration will be explicitly set to symmetric to central point "0". CalibMovingAverage = True/False : Default is False. If enabled, the moving average of the minimum and maximum values will be computed when the calibration method selected is MinMax. CalibMovingAverageConstant = float : Default is 0.01. Constant smoothing factor to use when computing the moving average of the minimum and maximum values. Effective only when the calibration method selected is MinMax and when CalibMovingAverage is set to True. execution_provider : A enum indicates the Execution Provider such as: CPU, TRT, NNAPI, SNE, etc. Raises: ValueError: Raise ValueError if execution provider is unknown """ super().__init__( activation_type=activation_type, weight_type=weight_type, op_types_to_quantize=op_types_to_quantize, nodes_to_quantize=nodes_to_quantize, nodes_to_exclude=nodes_to_exclude, per_channel=per_channel, reduce_range=reduce_range, optimize_model=optimize_model, use_external_data_format=use_external_data_format, ) self.calibration_data_reader = calibration_data_reader self.calibrate_method = calibrate_method self.quant_format = quant_format self.extra_options = extra_options or {} class DynamicQuantConfig(QuantConfig): def __init__( self, weight_type=QuantType.QInt8, op_types_to_quantize=None, nodes_to_quantize=None, nodes_to_exclude=None, per_channel=False, reduce_range=False, optimize_model=True, use_external_data_format=False, extra_options=None, ): """ This is a class for dynamic Quant Configuration Args: extra_options: key value pair dictionary for various options in different case. Current used: extra.Sigmoid.nnapi = True/False (Default is False) ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False). WeightSymmetric = True/False: symmetrize calibration data for weights (default is True). EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized. Dynamic mode currently is supported. Will support more in the future. ForceQuantizeNoInputCheck = True/False : By default, some latent operators like maxpool, transpose, do not quantize if their input is not quantized already. Setting to True to force such operator always quantize input and so generate quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude. MatMulConstBOnly = True/False: Default is True for dynamic mode. If enabled, only MatMul with const B will be quantized. execution_provider : A enum indicates the Execution Provider such as: CPU, TRT, NNAPI, SNE, etc. Raises: ValueError: Raise ValueError if execution provider is unknown """ super().__init__( op_types_to_quantize=op_types_to_quantize, per_channel=per_channel, reduce_range=reduce_range, weight_type=weight_type, nodes_to_quantize=nodes_to_quantize, nodes_to_exclude=nodes_to_exclude, optimize_model=optimize_model, use_external_data_format=use_external_data_format, ) self.extra_options = extra_options or {} def check_static_quant_arguments(quant_format: QuantFormat, activation_type: QuantType, weight_type: QuantType): if activation_type == QuantType.QInt8 and weight_type == QuantType.QUInt8: raise ValueError( "ONNXRuntime quantization doesn't support data format:" "activation_type=QuantType.QInt8, weight_type = QuantType.QUInt8" ) if activation_type == QuantType.QInt8 and weight_type == QuantType.QInt8 and quant_format != QuantFormat.QDQ: logging.warning( "Please use QuantFormat.QDQ for activation type QInt8 and weight type QInt8. " "Or it will lead to bad performance on x64." ) def quantize_static( model_input, model_output, calibration_data_reader: CalibrationDataReader, quant_format=QuantFormat.QDQ, op_types_to_quantize=None, per_channel=False, reduce_range=False, activation_type=QuantType.QInt8, weight_type=QuantType.QInt8, nodes_to_quantize=None, nodes_to_exclude=None, optimize_model=True, use_external_data_format=False, calibrate_method=CalibrationMethod.MinMax, extra_options=None, ): """ Given an onnx model and calibration data reader, create a quantized onnx model and save it into a file It is recommended to use QuantFormat.QDQ format from 1.11 with activation_type = QuantType.QInt8 and weight_type = QuantType.QInt8. If model is targeted to GPU/TRT, symmetric activation and weight are required. If model is targeted to CPU, asymmetric activation and symmetric weight are recommended for balance of performance and accuracy. Args: model_input: file path of model to quantize model_output: file path of quantized model calibration_data_reader: a calibration data reader. It enumerates calibration data and generates inputs for the original model. quant_format: QuantFormat{QOperator, QDQ}. QOperator format quantizes the model with quantized operators directly. QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor. activation_type: quantization data type of activation. Please refer to https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection calibrate_method: Current calibration methods supported are MinMax and Entropy. Please use CalibrationMethod.MinMax or CalibrationMethod.Entropy as options. op_types_to_quantize: specify the types of operators to quantize, like ['Conv'] to quantize Conv only. It quantizes all supported operators by default. per_channel: quantize weights per channel reduce_range: quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine, especially for per-channel mode weight_type: quantization data type of weight. Please refer to https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection nodes_to_quantize: List of nodes names to quantize. When this list is not None only the nodes in this list are quantized. example: [ 'Conv__224', 'Conv__252' ] nodes_to_exclude: List of nodes names to exclude. The nodes in this list will be excluded from quantization when it is not None. optimize_model: Deprecating Soon! Optimize model before quantization. NOT recommended, optimization will change the computation graph, making debugging of quantization loss difficult. use_external_data_format: option used for large size (>2GB) model. Set to False by default. extra_options: key value pair dictionary for various options in different case. Current used: extra.Sigmoid.nnapi = True/False (Default is False) ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False). WeightSymmetric = True/False: symmetrize calibration data for weights (default is True). EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized. Dyanmic mode currently is supported. Will support more in the future. ForceQuantizeNoInputCheck = True/False : By default, some latent operators like maxpool, transpose, do not quantize if their input is not quantized already. Setting to True to force such operator always quantize input and so generate quantized output. Also, the True behavior could be disabled per node using the nodes_to_exclude. MatMulConstBOnly = True/False: Default is False for static mode. If enabled, only MatMul with const B will be quantized. AddQDQPairToWeight = True/False : Default is False which quantizes floating-point weight and feeds it to solely inserted DeQuantizeLinear node. If True, it remains floating-point weight and inserts both QuantizeLinear/DeQuantizeLinear nodes to weight. OpTypesToExcludeOutputQuantization = list of op type : Default is []. If any op type is specified, it won't quantize the output of ops with this specific op types. DedicatedQDQPair = True/False : Default is False. When inserting QDQ pair, multiple nodes can share a single QDQ pair as their inputs. If True, it will create identical and dedicated QDQ pair for each node. QDQOpTypePerChannelSupportToAxis = dictionary : Default is {}. Set channel axis for specific op type, for example: {'MatMul': 1}, and it's effective only when per channel quantization is supported and per_channel is True. If specific op type supports per channel quantization but not explicitly specified with channel axis, default channel axis will be used. CalibTensorRangeSymmetric = True/False : Default is False. If enabled, the final range of tensor during calibration will be explicitly set to symmetric to central point "0". CalibMovingAverage = True/False : Default is False. If enabled, the moving average of the minimum and maximum values will be computed when the calibration method selected is MinMax. CalibMovingAverageConstant = float : Default is 0.01. Constant smoothing factor to use when computing the moving average of the minimum and maximum values. Effective only when the calibration method selected is MinMax and when CalibMovingAverage is set to True. """ extra_options = extra_options or {} nodes_to_exclude = nodes_to_exclude or [] nodes_to_quantize = nodes_to_quantize or [] op_types_to_quantize = op_types_to_quantize or [] mode = QuantizationMode.QLinearOps if not op_types_to_quantize or len(op_types_to_quantize) == 0: op_types_to_quantize = list(QLinearOpsRegistry.keys()) model = load_model(Path(model_input), optimize_model) pre_processed: bool = model_has_pre_process_metadata(model) if not pre_processed: logging.warning( "Please consider pre-processing before quantization. See " "https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification" "/cpu/ReadMe.md " ) calib_extra_options_keys = [ ("CalibTensorRangeSymmetric", "symmetric"), ("CalibMovingAverage", "moving_average"), ("CalibMovingAverageConstant", "averaging_constant"), ] calib_extra_options = { key: extra_options.get(name) for (name, key) in calib_extra_options_keys if name in extra_options } with tempfile.TemporaryDirectory(prefix="ort.quant.") as quant_tmp_dir: calibrator = create_calibrator( model, op_types_to_quantize, augmented_model_path=Path(quant_tmp_dir).joinpath("augmented_model.onnx").as_posix(), calibrate_method=calibrate_method, use_external_data_format=use_external_data_format, extra_options=calib_extra_options, ) calibrator.collect_data(calibration_data_reader) tensors_range = calibrator.compute_range() del calibrator check_static_quant_arguments(quant_format, activation_type, weight_type) if quant_format is QuantFormat.QOperator: quantizer = ONNXQuantizer( model, per_channel, reduce_range, mode, True, # static weight_type, activation_type, tensors_range, nodes_to_quantize, nodes_to_exclude, op_types_to_quantize, extra_options, ) else: quantizer = QDQQuantizer( model, per_channel, reduce_range, mode, True, # static weight_type, activation_type, tensors_range, nodes_to_quantize, nodes_to_exclude, op_types_to_quantize, extra_options, ) quantizer.quantize_model() quantizer.model.save_model_to_file(model_output, use_external_data_format) if not pre_processed: logging.warning( "Please consider pre-processing before quantization. See " "https://github.com/microsoft/onnxruntime-inference-examples/blob/main/quantization/image_classification" "/cpu/ReadMe.md " ) def quantize_dynamic( model_input: Path, model_output: Path, op_types_to_quantize=None, per_channel=False, reduce_range=False, weight_type=QuantType.QInt8, nodes_to_quantize=None, nodes_to_exclude=None, optimize_model=True, use_external_data_format=False, extra_options=None, ): """Given an onnx model, create a quantized onnx model and save it into a file Args: model_input: file path of model to quantize model_output: file path of quantized model op_types_to_quantize: specify the types of operators to quantize, like ['Conv'] to quantize Conv only. It quantizes all supported operators by default. per_channel: quantize weights per channel reduce_range: quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine, especially for per-channel mode weight_type: quantization data type of weight. Please refer to https://onnxruntime.ai/docs/performance/quantization.html for more details on data type selection nodes_to_quantize: List of nodes names to quantize. When this list is not None only the nodes in this list are quantized. example: [ 'Conv__224', 'Conv__252' ] nodes_to_exclude: List of nodes names to exclude. The nodes in this list will be excluded from quantization when it is not None. optimize_model: Deprecating Soon! Optimize model before quantization. NOT recommended, optimization will change the computation graph, making debugging of quantization loss difficult. use_external_data_format: option used for large size (>2GB) model. Set to False by default. extra_options: key value pair dictionary for various options in different case. Current used: extra.Sigmoid.nnapi = True/False (Default is False) ActivationSymmetric = True/False: symmetrize calibration data for activations (default is False). WeightSymmetric = True/False: symmetrize calibration data for weights (default is True). EnableSubgraph = True/False : Default is False. If enabled, subgraph will be quantized. Dynamic mode currently is supported. Will support more in the future. ForceQuantizeNoInputCheck = True/False : By default, some latent operators like maxpool, transpose, do not quantize if their input is not quantized already. Setting to True to force such operator always quantize input and so generate quantized output. Also the True behavior could be disabled per node using the nodes_to_exclude. MatMulConstBOnly = True/False: Default is True for dynamic mode. If enabled, only MatMul with const B will be quantized. """ extra_options = extra_options or {} nodes_to_exclude = nodes_to_exclude or [] nodes_to_quantize = nodes_to_quantize or [] op_types_to_quantize = op_types_to_quantize or [] mode = QuantizationMode.IntegerOps if not op_types_to_quantize or len(op_types_to_quantize) == 0: op_types_to_quantize = list(IntegerOpsRegistry.keys()) model = load_model(Path(model_input), optimize_model) if "MatMulConstBOnly" not in extra_options: extra_options["MatMulConstBOnly"] = True quantizer = ONNXQuantizer( model, per_channel, reduce_range, mode, False, # static weight_type, QuantType.QUInt8, # dynamic activation only supports uint8 None, nodes_to_quantize, nodes_to_exclude, op_types_to_quantize, extra_options, ) quantizer.quantize_model() quantizer.model.save_model_to_file(model_output, use_external_data_format) def quantize( model_input: Path, model_output: Path, quant_config: QuantConfig, ): """Quantize a model with QuantConfig. Args: model_input (Path): Path to the model to quantize. model_output (Path): Path to save the quantized model. quant_config (QuantConfig): Quantization Configuration. """ if isinstance(quant_config, StaticQuantConfig): quantize_static( model_input, model_output, quant_config.calibration_data_reader, calibrate_method=quant_config.calibrate_method, quant_format=quant_config.quant_format, activation_type=quant_config.activation_type, weight_type=quant_config.weight_type, op_types_to_quantize=quant_config.op_types_to_quantize, nodes_to_quantize=quant_config.nodes_to_quantize, nodes_to_exclude=quant_config.nodes_to_exclude, per_channel=quant_config.per_channel, reduce_range=quant_config.reduce_range, optimize_model=quant_config.optimize_model, use_external_data_format=quant_config.use_external_data_format, extra_options=quant_config.extra_options, ) elif isinstance(quant_config, DynamicQuantConfig): quantize_dynamic( model_input, model_output, weight_type=quant_config.weight_type, op_types_to_quantize=quant_config.op_types_to_quantize, nodes_to_quantize=quant_config.nodes_to_quantize, nodes_to_exclude=quant_config.nodes_to_exclude, per_channel=quant_config.per_channel, reduce_range=quant_config.reduce_range, optimize_model=quant_config.optimize_model, use_external_data_format=quant_config.use_external_data_format, extra_options=quant_config.extra_options, ) else: raise TypeError("Invalid quantization config type, it must be either StaticQuantConfig or DynamicQuantConfig.")