# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from logging import getLogger from typing import Tuple, Union import numpy as np from fusion_base import Fusion from fusion_utils import NumpyHelper from onnx import NodeProto, TensorProto, helper from onnx_model import OnnxModel logger = getLogger(__name__) class FusionAttentionUnet(Fusion): """ Fuse Attention subgraph of UNet into one Attention node. """ def __init__( self, model: OnnxModel, hidden_size: int, num_heads: int, is_cross_attention: bool, enable_packed_kv: bool ): super().__init__(model, "MultiHeadAttention" if is_cross_attention else "Attention", ["LayerNormalization"]) self.hidden_size = hidden_size self.num_heads = num_heads self.is_cross_attention = is_cross_attention self.enable_packed_kv = enable_packed_kv # Flags to show warning only once self.num_heads_warning = True self.hidden_size_warning = True def get_num_heads_and_hidden_size(self, reshape_q: NodeProto, layernorm_node: NodeProto) -> Tuple[int, int]: """Detect num_heads and hidden_size from a reshape node. Args: reshape_q (NodeProto): reshape node for Q add_q (NodeProto): add node for Q Returns: Tuple[int, int]: num_heads and hidden_size """ # we assume that reshape fusion has done, so the shape is a tensor like [0, 0, num_heads, head_size] q_shape_value = self.model.get_constant_value(reshape_q.input[1]) if q_shape_value is None: logger.debug(f"{reshape_q.input[1]} is not constant.") return self.num_heads, self.hidden_size # Fall back to user specified value if len(q_shape_value) != 4 or q_shape_value[2] <= 0: logger.debug(f"q_shape_value={q_shape_value}. Expected value are like [0, 0, num_heads, -1].") return self.num_heads, self.hidden_size # Fall back to user specified value num_heads = q_shape_value[2] layernorm_bias = self.model.get_initializer(layernorm_node.input[1]) if layernorm_bias is None: logger.debug(f"{layernorm_node.input[1]} is not initializer.") return self.num_heads, self.hidden_size # Fall back to user specified value hidden_size = NumpyHelper.to_array(layernorm_bias).shape[0] if self.num_heads > 0 and num_heads != self.num_heads: if self.num_heads_warning: logger.warning(f"--num_heads is {self.num_heads}. Detected value is {num_heads}. Using detected value.") self.num_heads_warning = False # Do not show the warning more than once if self.hidden_size > 0 and hidden_size != self.hidden_size: if self.hidden_size_warning: logger.warning( f"--hidden_size is {self.hidden_size}. Detected value is {hidden_size}. Using detected value." ) self.hidden_size_warning = False # Do not show the warning more than once return num_heads, hidden_size def create_attention_node( self, q_matmul: NodeProto, k_matmul: NodeProto, v_matmul: NodeProto, num_heads: int, hidden_size: int, input: str, output: str, ) -> Union[NodeProto, None]: """Create an Attention node. Args: q_matmul (NodeProto): MatMul node in fully connection for Q k_matmul (NodeProto): MatMul node in fully connection for K v_matmul (NodeProto): MatMul node in fully connection for V q_add (NodeProto): Add bias node in fully connection for Q k_add (NodeProto): Add bias node in fully connection for K v_add (NodeProto): Add bias node in fully connection for V num_heads (int): number of attention heads. If a model is pruned, it is the number of heads after pruning. hidden_size (int): hidden dimension. If a model is pruned, it is the hidden dimension after pruning. input (str): input name output (str): output name Returns: Union[NodeProto, None]: the node created or None if failed. """ is_self_attention = not self.is_cross_attention if is_self_attention: if q_matmul.input[0] != input or k_matmul.input[0] != input or v_matmul.input[0] != input: logger.debug( "For self attention, input hidden state for q and k/v shall be same. Got %s, %s, %s", q_matmul.input[0], k_matmul.input[0], v_matmul.input[0], ) return None else: if q_matmul.input[0] != input or (k_matmul.input[0] != v_matmul.input[0]) or (k_matmul.input[0] == input): logger.debug( "For cross attention, input hidden state for q and k/v shall be different. Got %s, %s, %s", q_matmul.input[0], k_matmul.input[0], v_matmul.input[0], ) return None if hidden_size > 0 and (hidden_size % num_heads) != 0: logger.debug(f"input hidden size {hidden_size} is not a multiple of num of heads {num_heads}") return None q_weight = self.model.get_initializer(q_matmul.input[1]) k_weight = self.model.get_initializer(k_matmul.input[1]) v_weight = self.model.get_initializer(v_matmul.input[1]) if not (q_weight and k_weight and v_weight): return None # Sometimes weights are stored in fp16 if q_weight.data_type == 10: logger.debug("weights are in fp16. Please run fp16 conversion after optimization") return None qw = NumpyHelper.to_array(q_weight) kw = NumpyHelper.to_array(k_weight) vw = NumpyHelper.to_array(v_weight) logger.debug(f"qw={qw.shape} kw={kw.shape} vw={vw.shape} hidden_size={hidden_size}") # assert q and k have same shape as expected if is_self_attention: if qw.shape != kw.shape or qw.shape != vw.shape: return None qw_in_size = qw.shape[0] kw_in_size = kw.shape[0] vw_in_size = vw.shape[0] assert qw_in_size == kw_in_size and kw_in_size == vw_in_size if hidden_size > 0 and hidden_size != qw_in_size: raise ValueError( f"Input hidden size ({hidden_size}) is not same as weight dimension of q,k,v ({qw_in_size}). " "Please provide a correct input hidden size or pass in 0" ) # All the matrices can have the same shape or q, k matrics can have the same shape with v being different # For 2d weights, the shapes would be [in_size, out_size]. # For 3d weights, shape would be [in_size, a, b] where a*b = out_size qw_out_size = np.prod(qw.shape[1:]) qkv_weight = np.stack((qw, kw, vw), axis=1) qkv_weight_dim = 3 * qw_out_size attention_node_name = self.model.create_node_name("Attention") weight = helper.make_tensor( name=attention_node_name + "_qkv_weight", data_type=TensorProto.FLOAT, dims=[qw_in_size, qkv_weight_dim], vals=qkv_weight.flatten().tolist(), ) self.model.add_initializer(weight, self.this_graph_name) else: # cross attention attention_node_name = self.model.create_node_name("MultiHeadAttention") if self.enable_packed_kv: if kw.shape != vw.shape: return None kw_in_size = kw.shape[0] vw_in_size = vw.shape[0] assert kw_in_size == vw_in_size qw_out_size = qw.shape[1] kw_out_size = kw.shape[1] vw_out_size = vw.shape[1] assert qw_out_size == vw_out_size and kw_out_size == vw_out_size c = kw_in_size n = num_heads h = kw_out_size // num_heads # Concat and interleave weights so that the output of fused KV GEMM has [B, S_kv, N, 2, H] shape kv_weight = np.dstack([kw.reshape(c, n, h), vw.reshape(c, n, h)]).reshape(c, n * 2 * h) matmul_node_name = self.model.create_node_name("MatMul", name_prefix="MatMul_KV") weight = helper.make_tensor( name=matmul_node_name + "_weight", data_type=TensorProto.FLOAT, dims=[kv_weight.shape[0], kv_weight.shape[1]], vals=kv_weight.flatten().tolist(), ) self.model.add_initializer(weight, self.this_graph_name) matmul_node = helper.make_node( "MatMul", inputs=[k_matmul.input[0], matmul_node_name + "_weight"], outputs=[matmul_node_name + "_out"], name=matmul_node_name, ) self.node_name_to_graph_name[matmul_node.name] = self.this_graph_name shape_tensor = helper.make_tensor( name=matmul_node_name + "_reshape_shape", data_type=TensorProto.INT64, dims=[5], vals=[0, 0, n, 2, h], ) self.model.add_initializer(shape_tensor, self.this_graph_name) reshape_node = helper.make_node( "Reshape", inputs=[matmul_node_name + "_out", matmul_node_name + "_reshape_shape"], outputs=[k_matmul.output[0]], name=matmul_node_name + "_reshape", ) self.node_name_to_graph_name[reshape_node.name] = self.this_graph_name self.nodes_to_add.extend([matmul_node, reshape_node]) self.nodes_to_remove.extend([k_matmul, v_matmul]) # No bias, use zeros qkv_bias = np.zeros([3, hidden_size], dtype=np.float32) qkv_bias_dim = 3 * hidden_size bias = helper.make_tensor( name=attention_node_name + "_qkv_bias", data_type=TensorProto.FLOAT, dims=[qkv_bias_dim], vals=qkv_bias.flatten().tolist(), ) self.model.add_initializer(bias, self.this_graph_name) if is_self_attention: attention_inputs = [ input, attention_node_name + "_qkv_weight", attention_node_name + "_qkv_bias", ] else: if not self.enable_packed_kv: attention_inputs = [ q_matmul.output[0], k_matmul.output[0], v_matmul.output[0], attention_node_name + "_qkv_bias", ] else: attention_inputs = [ q_matmul.output[0], k_matmul.output[0], ] attention_node = helper.make_node( "Attention" if is_self_attention else "MultiHeadAttention", inputs=attention_inputs, outputs=[output], name=attention_node_name, ) attention_node.domain = "com.microsoft" attention_node.attribute.extend([helper.make_attribute("num_heads", num_heads)]) counter_name = ( "Attention (self attention)" if is_self_attention else "MultiHeadAttention ({})".format( "cross attention with packed kv" if self.enable_packed_kv else "cross attention" ) ) self.increase_counter(counter_name) return attention_node def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node): node_before_layernorm = self.model.match_parent(normalize_node, "Add", 0) # In SD 1.5, for self attention, LayerNorm has parent Reshape if node_before_layernorm is None and not self.is_cross_attention: node_before_layernorm = self.model.match_parent(normalize_node, "Reshape", 0) if node_before_layernorm is None: return root_input = node_before_layernorm.output[0] children_nodes = input_name_to_nodes[root_input] skip_add = None for node in children_nodes: if node.op_type == "Add": # or node.op_type == "SkipLayerNormalization": skip_add = node break if skip_add is None: return another_input = 1 if skip_add.input[0] == root_input else 0 qkv_nodes = self.model.match_parent_path( skip_add, ["Add", "MatMul", "Reshape", "Transpose", "Reshape", "MatMul"], [another_input, None, None, 0, 0, 0], ) if qkv_nodes is None: return (_, _, reshape_qkv, transpose_qkv, _, matmul_qkv) = qkv_nodes # No bias. For cross-attention, the input of the MatMul is encoder_hidden_states graph input. v_nodes = self.model.match_parent_path(matmul_qkv, ["Reshape", "Transpose", "Reshape", "MatMul"], [1, 0, 0, 0]) if v_nodes is None: logger.debug("fuse_attention: failed to match v path") return (_, _, _, matmul_v) = v_nodes qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Mul", "MatMul"], [0, 0, 0]) if qk_nodes is not None: (_softmax_qk, _mul_qk, matmul_qk) = qk_nodes else: qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Add", "Mul", "MatMul"], [0, 0, 0, 0]) if qk_nodes is not None: (_softmax_qk, _add_zero, _mul_qk, matmul_qk) = qk_nodes else: logger.debug("fuse_attention: failed to match qk path") return q_nodes = self.model.match_parent_path(matmul_qk, ["Reshape", "Transpose", "Reshape", "MatMul"], [0, 0, 0, 0]) if q_nodes is None: logger.debug("fuse_attention: failed to match q path") return (_, _transpose_q, reshape_q, matmul_q) = q_nodes k_nodes = self.model.match_parent_path( matmul_qk, ["Transpose", "Reshape", "Transpose", "Reshape", "MatMul"], [1, 0, 0, 0, 0] ) if k_nodes is None: logger.debug("fuse_attention: failed to match k path") return (_, _, _, _, matmul_k) = k_nodes attention_last_node = reshape_qkv q_num_heads, q_hidden_size = self.get_num_heads_and_hidden_size(reshape_q, normalize_node) if q_num_heads <= 0: logger.debug("fuse_attention: failed to detect num_heads") return # number of heads are same for all the paths, hence to create attention node, we pass the q_num_heads new_node = self.create_attention_node( matmul_q, matmul_k, matmul_v, q_num_heads, q_hidden_size, input=normalize_node.output[0], output=attention_last_node.output[0], ) if new_node is None: return self.nodes_to_add.append(new_node) self.node_name_to_graph_name[new_node.name] = self.this_graph_name self.nodes_to_remove.extend([attention_last_node, transpose_qkv]) # Use prune graph to remove nodes since they are shared by all attention nodes. self.prune_graph = True