# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from logging import getLogger import numpy as np from fusion_base import Fusion from onnx import TensorProto, helper, numpy_helper from onnx_model import OnnxModel logger = getLogger(__name__) class FusionReshape(Fusion): def __init__(self, model: OnnxModel): super().__init__(model, "Reshape", "Reshape") self.prune_graph: bool = False def replace_reshape_node(self, shape, reshape_node, concat_node): shape_value = np.asarray(shape, dtype=np.int64) constant_shape_name = self.model.create_node_name("Constant", "constant_shape") new_node = helper.make_node( "Constant", inputs=[], outputs=[constant_shape_name], value=helper.make_tensor( name="const_tensor", data_type=TensorProto.INT64, dims=shape_value.shape, vals=bytes(shape_value), raw=True, ), ) reshape_node.input[1] = constant_shape_name reshape_node.name = self.model.create_node_name("Reshape", "Reshape_Fuse") self.nodes_to_remove.extend([concat_node]) self.nodes_to_add.append(new_node) self.node_name_to_graph_name[new_node.name] = self.this_graph_name def fuse(self, reshape_node, input_name_to_nodes, output_name_to_node): if reshape_node.input[1] not in output_name_to_node: return concat_node = output_name_to_node[reshape_node.input[1]] if concat_node.op_type != "Concat" or len(concat_node.input) < 3 or len(concat_node.input) > 4: return path0 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Gather", "Shape"], [0, 0, 0], output_name_to_node, ) if path0 is None: return (unsqueeze_0, gather_0, shape_0) = path0 path1 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Gather", "Shape"], [1, 0, 0], output_name_to_node, ) if path1 is None: return (unsqueeze_1, gather_1, shape_1) = path1 shape = [] gather_value = self.model.get_constant_value(gather_0.input[1]) if gather_value == 0: shape.append(0) gather_value = self.model.get_constant_value(gather_1.input[1]) if gather_value == 1: shape.append(0) if len(shape) != 2: return path2 = [] path3 = [] shape_nodes = [shape_0, shape_1] if len(concat_node.input) == 3 and self.model.get_initializer(concat_node.input[2]) is None: path2 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Mul", "Gather", "Shape"], [2, 0, 0, 0], output_name_to_node, ) if path2 is None: path2 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Mul", "Squeeze", "Slice", "Shape"], [2, 0, 0, 0, 0], output_name_to_node, ) # GPT2 exported by PyTorch 1.4 with opset_version=11 if path2 is None: return path3 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Mul", "Gather", "Shape"], [2, 0, 1, 0], output_name_to_node, ) if path3 is None: path3 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Mul", "Squeeze", "Slice", "Shape"], [2, 0, 1, 0, 0], output_name_to_node, ) # GPT2 exported by PyTorch 1.4 with opset_version=11 if path3 is None: return shape_nodes.extend([path2[-1], path3[-1]]) shape.append(-1) elif len(concat_node.input) > 2: concat_value = self.model.get_constant_value(concat_node.input[2]) if concat_value is None: return if isinstance(concat_value, np.ndarray): shape.extend(concat_value.tolist()) else: shape.append(concat_value) if len(concat_node.input) == 4 and self.model.get_constant_value(concat_node.input[3]) is None: if -1 in shape: return path2 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Div", "Gather", "Shape"], [3, 0, 0, 0], output_name_to_node, ) if path2 is None: path2 = self.model.match_parent_path( concat_node, ["Unsqueeze", "Div", "Squeeze", "Slice", "Shape"], [3, 0, 0, 0, 0], output_name_to_node, ) # GPT2 exported by PyTorch 1.4 with opset_version=11 if path2 is None: return shape_nodes.extend([path2[-1]]) shape.append(-1) elif len(concat_node.input) > 3: concat_3 = self.model.get_initializer(concat_node.input[3]) if concat_3 is None: return concat_value = numpy_helper.to_array(concat_3) if isinstance(concat_value, np.ndarray): shape.extend(concat_value.tolist()) else: shape.append(concat_value) root_input = reshape_node.input[0] same_shape_input = True for shape_node in shape_nodes: if shape_node.input[0] != root_input: same_shape_input = False if not same_shape_input: return self.replace_reshape_node(shape, reshape_node, concat_node) # TODO(tlwu): Subgraph blocks pruning un-used nodes. Add code to remove un-used nodes safely. self.prune_graph = True