# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import logging import os import sys from pathlib import Path from typing import Dict, List, Union import torch from t5_decoder import T5Decoder, T5DecoderHelper, T5DecoderInit from t5_encoder import T5Encoder, T5EncoderHelper from t5_encoder_decoder_init import T5EncoderDecoderInit, T5EncoderDecoderInitHelper from transformers import MT5ForConditionalGeneration, T5ForConditionalGeneration from onnxruntime import InferenceSession sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) from float16 import float_to_float16_max_diff from onnx_model import OnnxModel from optimizer import optimize_model logger = logging.getLogger(__name__) PRETRAINED_T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b"] PRETRAINED_MT5_MODELS = ["google/mt5-small", "google/mt5-base", "google/mt5-large", "google/mt5-xl", "google/mt5-xxl"] class T5Helper: @staticmethod def get_onnx_path( output_dir: str, model_name_or_path: str, suffix: str = "", new_folder: bool = False, ) -> str: """Build onnx path Args: output_dir (str): output directory model_name_or_path (str): pretrained model name, or path to the model checkpoint suffix (str, optional): suffix like "_encoder" or "_decoder_fp16" will be appended to file name. Defaults to None. new_folder (bool, optional): create a new directory for the model. Defaults to False. Returns: str: path of onnx model """ model_name = model_name_or_path if os.path.isdir(model_name_or_path): model_name = Path(model_name_or_path).parts[-1] else: model_name.split("/")[-1] model_name += suffix directory = os.path.join(output_dir, model_name) if new_folder else output_dir return os.path.join(directory, model_name + ".onnx") @staticmethod def load_model( model_name_or_path: str, cache_dir: str, device: torch.device, merge_encoder_and_decoder_init: bool = True, model_type: str = "t5", ) -> Dict[str, torch.nn.Module]: """Load model given a pretrained name or path, then build models for ONNX conversion. Args: model_name_or_path (str): pretrained model name or path cache_dir (str): cache directory device (torch.device): device to run the model merge_encoder_and_decoder_init (bool, optional): Whether merge encoder and decoder initialization into one ONNX model. Defaults to True. is_mt5 (bool, optional): whether the model is MT5 instead of T5 Returns: Dict[str, torch.nn.Module]: mapping from name to modules for ONNX conversion. """ if model_type == "t5": model = T5ForConditionalGeneration.from_pretrained(model_name_or_path, cache_dir=cache_dir) elif model_type == "mt5": model = MT5ForConditionalGeneration.from_pretrained(model_name_or_path, cache_dir=cache_dir) else: raise ValueError("only support mode_type=t5 or mt5") decoder = T5Decoder(model.decoder, model.lm_head, model.config) decoder.eval().to(device) if merge_encoder_and_decoder_init: encoder_decoder_init = T5EncoderDecoderInit( model.encoder, model.decoder, model.lm_head, model.config, decoder_start_token_id=None, ) return {"encoder_decoder_init": encoder_decoder_init, "decoder": decoder} else: encoder = T5Encoder(model.encoder, model.config) encoder.eval().to(device) decoder_init = T5DecoderInit(model.decoder, model.lm_head, model.config) decoder_init.eval().to(device) return { "encoder": encoder, "decoder": decoder, "decoder_init": decoder_init, } @staticmethod def export_onnx( model: Union[T5Encoder, T5Decoder, T5DecoderInit, T5EncoderDecoderInit], device: torch.device, onnx_model_path: str, verbose: bool = True, use_external_data_format: bool = False, use_decoder_input_ids: bool = True, use_int32_inputs: bool = False, ): if isinstance(model, T5Encoder): T5EncoderHelper.export_onnx( model, device, onnx_model_path, verbose, use_external_data_format, use_int32_inputs, ) elif isinstance(model, T5EncoderDecoderInit): T5EncoderDecoderInitHelper.export_onnx( model, device, onnx_model_path, use_decoder_input_ids, verbose, use_external_data_format, use_int32_inputs, ) else: T5DecoderHelper.export_onnx( model, device, onnx_model_path, verbose, use_external_data_format, use_int32_inputs, ) @staticmethod def auto_mixed_precision( onnx_model: OnnxModel, op_block_list: List[str] = [ "Pow", "ReduceMean", "Add", "Sqrt", "Div", "Mul", "Softmax", "Relu", ], ): """Convert model to mixed precision. It detects whether original model has fp16 precision weights, and set parameters for float16 conversion automatically. Args: onnx_model (OnnxModel): optimized ONNX model op_block_list (List[str], optional): . Defaults to ["Pow", "ReduceMean", "Add", "Sqrt", "Div", "Mul", "Softmax", "Relu"] Returns: parameters(dict): a dictionary of parameters used in float16 conversion """ op_full_set = set([node.op_type for node in onnx_model.nodes()]) fp32_op_set = set(op_block_list) fp16_op_set = op_full_set.difference(fp32_op_set) logger.info(f"fp32 op: {fp32_op_set} fp16 op: {fp16_op_set}") # logits is the first output logits_output_name = onnx_model.graph().output[0].name # We use the weight in last MatMul node to detect whether the model is stored with float16 weights from training. is_weight_fp16_precision = False output_name_to_node = onnx_model.output_name_to_node() assert logits_output_name in output_name_to_node node = output_name_to_node[logits_output_name] last_matmul_node = None if node.op_type == "MatMul": last_matmul_node = node logger.info(f"Found last MatMul node for logits: {node.name}") initializer = None for input in node.input: initializer = onnx_model.get_initializer(input) if initializer is not None: break # when the max difference of value after converting float to float16 is lower than a threshold (1e-6), # we can deduce that the weights are stored in float16 precision. max_diff = float_to_float16_max_diff(initializer) logger.debug(f"max diff of converting weights in last MatMul node {node.name}: {max_diff}") is_weight_fp16_precision = max_diff < 1e-6 else: logger.warning(f"Failed to find MatMul node for logits. Found {node.op_type} of node {node.name}") keep_io_types = [] node_block_list = [] if (not is_weight_fp16_precision) and (last_matmul_node is not None): # When original weight is float32 precision, keep logits and last MatMul in float32 could get better precision. keep_io_types = [logits_output_name] node_block_list = [last_matmul_node.name] parameters = { "keep_io_types": keep_io_types, "op_block_list": op_block_list, "node_block_list": node_block_list, "force_fp16_initializers": is_weight_fp16_precision, } logger.info(f"auto_mixed_precision parameters: {parameters}") onnx_model.convert_float_to_float16(use_symbolic_shape_infer=True, **parameters) return parameters @staticmethod def optimize_onnx( onnx_model_path: str, optimized_model_path: str, is_float16: bool, num_attention_heads: int, hidden_size: int, use_external_data_format: bool = False, auto_mixed_precision: bool = True, ): """Optimize ONNX model with an option to convert it to use mixed precision.""" m = optimize_model( onnx_model_path, model_type="bert", # TODO: support optimization for t5 num_heads=num_attention_heads, hidden_size=hidden_size, opt_level=0, optimization_options=None, use_gpu=False, ) if is_float16: if auto_mixed_precision: T5Helper.auto_mixed_precision(m) else: m.convert_model_float32_to_float16(cast_input_output=False) m.save_model_to_file(optimized_model_path, use_external_data_format, all_tensors_to_one_file=True) @staticmethod def verify_onnx( model: Union[T5Encoder, T5Decoder, T5DecoderInit, T5EncoderDecoderInit], ort_session: InferenceSession, device: torch.device, use_int32_inputs: bool, ): """Compare the result from PyTorch and OnnxRuntime to verify the ONNX model is good.""" if isinstance(model, T5Encoder): return T5EncoderHelper.verify_onnx(model, ort_session, device, use_int32_inputs) if isinstance(model, T5EncoderDecoderInit): return T5EncoderDecoderInitHelper.verify_onnx(model, ort_session, device, use_int32_inputs) return T5DecoderHelper.verify_onnx(model, ort_session, device, use_int32_inputs)