m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

46 lines
1.4 KiB

from sympy.core.backend import symbols
from sympy.physics.mechanics import dynamicsymbols
from sympy.physics.mechanics import ReferenceFrame, Point, Particle
from sympy.physics.mechanics import LagrangesMethod, Lagrangian
### This test asserts that a system with more than one external forces
### is acurately formed with Lagrange method (see issue #8626)
def test_lagrange_2forces():
### Equations for two damped springs in serie with two forces
### generalized coordinates
q1, q2 = dynamicsymbols('q1, q2')
### generalized speeds
q1d, q2d = dynamicsymbols('q1, q2', 1)
### Mass, spring strength, friction coefficient
m, k, nu = symbols('m, k, nu')
N = ReferenceFrame('N')
O = Point('O')
### Two points
P1 = O.locatenew('P1', q1 * N.x)
P1.set_vel(N, q1d * N.x)
P2 = O.locatenew('P1', q2 * N.x)
P2.set_vel(N, q2d * N.x)
pP1 = Particle('pP1', P1, m)
pP1.potential_energy = k * q1**2 / 2
pP2 = Particle('pP2', P2, m)
pP2.potential_energy = k * (q1 - q2)**2 / 2
#### Friction forces
forcelist = [(P1, - nu * q1d * N.x),
(P2, - nu * q2d * N.x)]
lag = Lagrangian(N, pP1, pP2)
l_method = LagrangesMethod(lag, (q1, q2), forcelist=forcelist, frame=N)
l_method.form_lagranges_equations()
eq1 = l_method.eom[0]
assert eq1.diff(q1d) == nu
eq2 = l_method.eom[1]
assert eq2.diff(q2d) == nu