You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
18 KiB
460 lines
18 KiB
from pathlib import Path
|
|
|
|
import onnx
|
|
import onnx.helper as onnx_helper
|
|
import onnx.numpy_helper as onnx_numpy_helper
|
|
|
|
from .quant_utils import attribute_to_kwarg, find_by_name
|
|
|
|
|
|
def _clean_initializers_helper(graph, model):
|
|
"""Clean unused initializers from graph.
|
|
|
|
Returns:
|
|
A cleaned graph without unused initializers
|
|
A list of tensor names, which are not produced by this graph and its subgraphes
|
|
"""
|
|
requesting_tensor_names = set()
|
|
requesting_tensor_names.update(input_name for node in graph.node for input_name in node.input if input_name)
|
|
requesting_tensor_names.update(g_out.name for g_out in graph.output if g_out.name)
|
|
|
|
new_nodes = []
|
|
for node in graph.node:
|
|
new_node = node
|
|
graph_attrs = [
|
|
attr
|
|
for attr in node.attribute
|
|
if attr.type == onnx.AttributeProto.GRAPH or attr.type == onnx.AttributeProto.GRAPHS
|
|
]
|
|
if graph_attrs:
|
|
kwargs = {}
|
|
for attr in node.attribute:
|
|
new_attribute = {}
|
|
if attr.type == onnx.AttributeProto.GRAPH:
|
|
(
|
|
cleaned_sub_graph,
|
|
sub_requesting_tensor_names,
|
|
) = _clean_initializers_helper(attr.g, model)
|
|
new_attribute = {attr.name: cleaned_sub_graph}
|
|
requesting_tensor_names.update(sub_requesting_tensor_names)
|
|
elif attr.type == onnx.AttributeProto.GRAPHS:
|
|
cleaned_graphes = []
|
|
for subgraph in attr.graphs:
|
|
(
|
|
cleaned_sub_graph,
|
|
sub_requesting_tensor_names,
|
|
) = _clean_initializers_helper(subgraph, model)
|
|
cleaned_graphes.append(cleaned_sub_graph)
|
|
requesting_tensor_names.update(sub_requesting_tensor_names)
|
|
new_attribute = {attr.name: cleaned_graphes}
|
|
else:
|
|
new_attribute = attribute_to_kwarg(attr)
|
|
kwargs.update(new_attribute)
|
|
new_node = onnx_helper.make_node(node.op_type, node.input, node.output, name=node.name, **kwargs)
|
|
new_nodes.append(new_node)
|
|
|
|
graph.ClearField("node")
|
|
graph.node.extend(new_nodes)
|
|
|
|
requesting_tensor_names.difference_update(output for node in graph.node for output in node.output)
|
|
|
|
unused_initializer = []
|
|
for initializer in graph.initializer:
|
|
if initializer.name in requesting_tensor_names:
|
|
requesting_tensor_names.remove(initializer.name)
|
|
else:
|
|
# mark it to remove, remove here directly will cause mis-behavier
|
|
unused_initializer.append(initializer)
|
|
|
|
name_to_input = {input.name: input for input in graph.input}
|
|
for initializer in unused_initializer:
|
|
graph.initializer.remove(initializer)
|
|
if initializer.name in name_to_input:
|
|
try:
|
|
graph.input.remove(name_to_input[initializer.name])
|
|
except StopIteration:
|
|
if model.ir_version < 4:
|
|
print(
|
|
"Warning: invalid weight name {} found in the graph (not a graph input)".format(
|
|
initializer.name
|
|
)
|
|
)
|
|
|
|
requesting_tensor_names.difference_update(input.name for input in graph.input)
|
|
|
|
return graph, requesting_tensor_names
|
|
|
|
|
|
class ONNXModel:
|
|
def __init__(self, model):
|
|
self.model = model
|
|
|
|
def nodes(self):
|
|
return self.model.graph.node
|
|
|
|
def initializer(self):
|
|
return self.model.graph.initializer
|
|
|
|
def graph(self):
|
|
return self.model.graph
|
|
|
|
def ir_version(self):
|
|
return self.model.ir_version
|
|
|
|
def opset_import(self):
|
|
return self.model.opset_import
|
|
|
|
def remove_node(self, node):
|
|
if node in self.model.graph.node:
|
|
self.model.graph.node.remove(node)
|
|
|
|
def remove_nodes(self, nodes_to_remove):
|
|
for node in nodes_to_remove:
|
|
self.remove_node(node)
|
|
|
|
def add_node(self, node):
|
|
self.model.graph.node.extend([node])
|
|
|
|
def add_nodes(self, nodes_to_add):
|
|
self.model.graph.node.extend(nodes_to_add)
|
|
|
|
def add_initializer(self, tensor):
|
|
if find_by_name(tensor.name, self.model.graph.initializer) is None:
|
|
self.model.graph.initializer.extend([tensor])
|
|
|
|
def get_initializer(self, name):
|
|
for tensor in self.model.graph.initializer:
|
|
if tensor.name == name:
|
|
return tensor
|
|
return None
|
|
|
|
def get_initializer_name_set(self):
|
|
return set(initializer.name for initializer in self.model.graph.initializer)
|
|
|
|
def remove_initializer(self, tensor):
|
|
if tensor in self.model.graph.initializer:
|
|
self.model.graph.initializer.remove(tensor)
|
|
for input in self.model.graph.input:
|
|
if input.name == tensor.name:
|
|
self.model.graph.input.remove(input)
|
|
break
|
|
|
|
def remove_initializers(self, init_to_remove):
|
|
for initializer in init_to_remove:
|
|
self.remove_initializer(initializer)
|
|
|
|
def get_non_initializer_inputs(self):
|
|
initializer_names = self.get_initializer_name_set()
|
|
non_initializer_inputs = set()
|
|
for input in self.model.graph.input:
|
|
if input.name not in initializer_names:
|
|
non_initializer_inputs.add(input.name)
|
|
return non_initializer_inputs
|
|
|
|
def input_name_to_nodes(self):
|
|
input_name_to_nodes = {}
|
|
for node in self.model.graph.node:
|
|
for input_name in node.input:
|
|
if input_name not in input_name_to_nodes:
|
|
input_name_to_nodes[input_name] = [node]
|
|
else:
|
|
input_name_to_nodes[input_name].append(node)
|
|
return input_name_to_nodes
|
|
|
|
def output_name_to_node(self):
|
|
output_name_to_node = {}
|
|
for node in self.model.graph.node:
|
|
for output_name in node.output:
|
|
output_name_to_node[output_name] = node
|
|
return output_name_to_node
|
|
|
|
def get_children(self, node, input_name_to_nodes=None):
|
|
if input_name_to_nodes is None:
|
|
input_name_to_nodes = self.input_name_to_nodes()
|
|
|
|
children = []
|
|
for output in node.output:
|
|
if output in input_name_to_nodes:
|
|
for node in input_name_to_nodes[output]:
|
|
children.append(node)
|
|
return children
|
|
|
|
def get_parents(self, node, output_name_to_node=None):
|
|
if output_name_to_node is None:
|
|
output_name_to_node = self.output_name_to_node()
|
|
|
|
parents = []
|
|
for input in node.input:
|
|
if input in output_name_to_node:
|
|
parents.append(output_name_to_node[input])
|
|
return parents
|
|
|
|
def get_parent(self, node, idx, output_name_to_node=None):
|
|
if output_name_to_node is None:
|
|
output_name_to_node = self.output_name_to_node()
|
|
|
|
if len(node.input) <= idx:
|
|
return None
|
|
|
|
input = node.input[idx]
|
|
if input not in output_name_to_node:
|
|
return None
|
|
|
|
return output_name_to_node[input]
|
|
|
|
def find_node_by_name(self, node_name, new_nodes_list, graph):
|
|
"""Find out if a node exists in a graph or a node is in the
|
|
new set of nodes created during quantization.
|
|
|
|
Returns:
|
|
The node found or None.
|
|
"""
|
|
graph_nodes_list = list(graph.node) # deep copy
|
|
graph_nodes_list.extend(new_nodes_list)
|
|
node = find_by_name(node_name, graph_nodes_list)
|
|
return node
|
|
|
|
def find_nodes_by_initializer(self, graph, initializer):
|
|
"""
|
|
Find all nodes with given initializer as an input.
|
|
"""
|
|
nodes = []
|
|
for node in graph.node:
|
|
for node_input in node.input:
|
|
if node_input == initializer.name:
|
|
nodes.append(node)
|
|
return nodes
|
|
|
|
@staticmethod
|
|
def __get_initializer(name, graph_path):
|
|
for gid in range(len(graph_path) - 1, -1, -1):
|
|
graph = graph_path[gid]
|
|
for tensor in graph.initializer:
|
|
if tensor.name == name:
|
|
return tensor, graph
|
|
return None, None
|
|
|
|
@staticmethod
|
|
def __replace_gemm_with_matmul(graph_path):
|
|
new_nodes = []
|
|
graph = graph_path[-1]
|
|
for node in graph.node:
|
|
graph_attrs = [attr for attr in node.attribute if attr.type == 5 or attr.type == 10]
|
|
if len(graph_attrs):
|
|
kwargs = {}
|
|
for attr in node.attribute:
|
|
if attr.type == 5:
|
|
graph_path.append(attr.g)
|
|
kv = {attr.name: ONNXModel.__replace_gemm_with_matmul(graph_path)}
|
|
elif attr.type == 10:
|
|
value = []
|
|
for subgraph in attr.graphs:
|
|
graph_path.append(subgraph)
|
|
value.extend([ONNXModel.__replace_gemm_with_matmul(graph_path)])
|
|
kv = {attr.name: value}
|
|
else:
|
|
kv = attribute_to_kwarg(attr)
|
|
kwargs.update(kv)
|
|
node = onnx_helper.make_node(node.op_type, node.input, node.output, name=node.name, **kwargs)
|
|
|
|
if node.op_type == "Gemm":
|
|
alpha = 1.0
|
|
beta = 1.0
|
|
transA = 0
|
|
transB = 0
|
|
for attr in node.attribute:
|
|
if attr.name == "alpha":
|
|
alpha = onnx_helper.get_attribute_value(attr)
|
|
elif attr.name == "beta":
|
|
beta = onnx_helper.get_attribute_value(attr)
|
|
elif attr.name == "transA":
|
|
transA = onnx_helper.get_attribute_value(attr)
|
|
elif attr.name == "transB":
|
|
transB = onnx_helper.get_attribute_value(attr)
|
|
if alpha == 1.0 and beta == 1.0 and transA == 0:
|
|
inputB = node.input[1]
|
|
if transB == 1:
|
|
B, Bs_graph = ONNXModel.__get_initializer(node.input[1], graph_path)
|
|
if B:
|
|
# assume B is not used by any other node
|
|
B_array = onnx_numpy_helper.to_array(B)
|
|
B_trans = onnx_numpy_helper.from_array(B_array.T)
|
|
B_trans.name = B.name
|
|
Bs_graph.initializer.remove(B)
|
|
for input in Bs_graph.input:
|
|
if input.name == inputB:
|
|
Bs_graph.input.remove(input)
|
|
break
|
|
Bs_graph.initializer.extend([B_trans])
|
|
else:
|
|
inputB += "_Transposed"
|
|
transpose_node = onnx_helper.make_node(
|
|
"Transpose",
|
|
inputs=[node.input[1]],
|
|
outputs=[inputB],
|
|
name=node.name + "_Transpose" if node.name != "" else "",
|
|
)
|
|
new_nodes.append(transpose_node)
|
|
|
|
matmul_node = onnx_helper.make_node(
|
|
"MatMul",
|
|
inputs=[node.input[0], inputB],
|
|
outputs=[node.output[0] + ("_MatMul" if len(node.input) > 2 else "")],
|
|
name=node.name + "_MatMul" if node.name != "" else "",
|
|
)
|
|
new_nodes.append(matmul_node)
|
|
|
|
if len(node.input) > 2:
|
|
add_node = onnx_helper.make_node(
|
|
"Add",
|
|
inputs=[node.output[0] + "_MatMul", node.input[2]],
|
|
outputs=node.output,
|
|
name=node.name + "_Add" if node.name != "" else "",
|
|
)
|
|
new_nodes.append(add_node)
|
|
|
|
# unsupported
|
|
else:
|
|
new_nodes.append(node)
|
|
|
|
# not GEMM
|
|
else:
|
|
new_nodes.append(node)
|
|
|
|
graph.ClearField("node")
|
|
graph.node.extend(new_nodes)
|
|
graph_path.pop()
|
|
return graph
|
|
|
|
def replace_gemm_with_matmul(self):
|
|
graph_path = [self.graph()]
|
|
ONNXModel.__replace_gemm_with_matmul(graph_path)
|
|
|
|
def save_model_to_file(self, output_path, use_external_data_format=False):
|
|
"""
|
|
Save model to external data, which is needed for model size > 2GB
|
|
"""
|
|
self.topological_sort()
|
|
if use_external_data_format:
|
|
onnx.external_data_helper.convert_model_to_external_data(
|
|
self.model,
|
|
all_tensors_to_one_file=True,
|
|
location=Path(output_path).name + ".data",
|
|
)
|
|
onnx.save_model(self.model, output_path)
|
|
|
|
@staticmethod
|
|
def replace_node_input(node, old_input_name, new_input_name):
|
|
assert isinstance(old_input_name, str) and isinstance(new_input_name, str)
|
|
for j in range(len(node.input)):
|
|
if node.input[j] == old_input_name:
|
|
node.input[j] = new_input_name
|
|
|
|
def replace_input_of_all_nodes(self, old_input_name, new_input_name):
|
|
for node in self.model.graph.node:
|
|
ONNXModel.replace_node_input(node, old_input_name, new_input_name)
|
|
|
|
@staticmethod
|
|
def replace_node_output(node, old_output_name, new_output_name):
|
|
assert isinstance(old_output_name, str) and isinstance(new_output_name, str)
|
|
for j in range(len(node.output)):
|
|
if node.output[j] == old_output_name:
|
|
node.output[j] = new_output_name
|
|
|
|
def replace_output_of_all_nodes(self, old_output_name, new_output_name):
|
|
for node in self.model.graph.node:
|
|
ONNXModel.replace_node_output(node, old_output_name, new_output_name)
|
|
|
|
def remove_unused_constant(self):
|
|
input_name_to_nodes = self.input_name_to_nodes()
|
|
|
|
# remove unused constant
|
|
unused_nodes = []
|
|
nodes = self.nodes()
|
|
for node in nodes:
|
|
if (
|
|
node.op_type == "Constant"
|
|
and not self.is_graph_output(node.output[0])
|
|
and node.output[0] not in input_name_to_nodes
|
|
):
|
|
unused_nodes.append(node)
|
|
|
|
self.remove_nodes(unused_nodes)
|
|
|
|
ununsed_weights = []
|
|
for w in self.initializer():
|
|
if w.name not in input_name_to_nodes and not self.is_graph_output(w.name):
|
|
ununsed_weights.append(w)
|
|
# Remove from graph.input
|
|
for graph_input in self.graph().input:
|
|
if graph_input.name == w.name:
|
|
self.graph().input.remove(graph_input)
|
|
|
|
self.remove_initializers(ununsed_weights)
|
|
|
|
def is_graph_output(self, output_name):
|
|
for output in self.model.graph.output:
|
|
if output.name == output_name:
|
|
return True
|
|
return False
|
|
|
|
def is_graph_input(self, tensor_name: str) -> bool:
|
|
for input in self.model.graph.input:
|
|
if input.name == tensor_name:
|
|
return True
|
|
return False
|
|
|
|
# TODO:use OnnxModel.graph_topological_sort(self.model.graph) from transformers.onnx_model
|
|
# Currently it breaks Openvino/Linux training gpu pipeline so hold off for 1.8 release
|
|
def topological_sort(self):
|
|
deps_count = [0] * len(self.nodes()) # dependency count of each node
|
|
deps_to_nodes = {} # input to node indice
|
|
sorted_nodes = [] # initialize sorted_nodes
|
|
for node_idx, node in enumerate(self.nodes()):
|
|
# CANNOT use len(node.input) directly because input can be optional
|
|
deps_count[node_idx] = sum(1 for _ in node.input if _)
|
|
if deps_count[node_idx] == 0: # Constant doesn't depend on any inputs
|
|
sorted_nodes.append(self.nodes()[node_idx])
|
|
continue
|
|
|
|
for input_name in node.input:
|
|
if input_name not in deps_to_nodes:
|
|
deps_to_nodes[input_name] = [node_idx]
|
|
else:
|
|
deps_to_nodes[input_name].append(node_idx)
|
|
|
|
initializer_names = [init.name for init in self.initializer()]
|
|
graph_input_names = [input.name for input in self.model.graph.input]
|
|
input_names = initializer_names + graph_input_names
|
|
input_names.sort()
|
|
prev_input_name = None
|
|
for input_name in input_names:
|
|
if prev_input_name == input_name:
|
|
continue
|
|
|
|
prev_input_name = input_name
|
|
if input_name in deps_to_nodes:
|
|
for node_idx in deps_to_nodes[input_name]:
|
|
deps_count[node_idx] = deps_count[node_idx] - 1
|
|
if deps_count[node_idx] == 0:
|
|
sorted_nodes.append(self.nodes()[node_idx])
|
|
|
|
start = 0
|
|
end = len(sorted_nodes)
|
|
|
|
while start < end:
|
|
for output in sorted_nodes[start].output:
|
|
if output in deps_to_nodes:
|
|
for node_idx in deps_to_nodes[output]:
|
|
deps_count[node_idx] = deps_count[node_idx] - 1
|
|
if deps_count[node_idx] == 0:
|
|
sorted_nodes.append(self.nodes()[node_idx])
|
|
end = end + 1
|
|
start = start + 1
|
|
|
|
assert end == len(self.graph().node), "Graph is not a DAG"
|
|
self.graph().ClearField("node")
|
|
self.graph().node.extend(sorted_nodes)
|
|
|
|
def clean_initializers(self):
|
|
return _clean_initializers_helper(self.graph(), self.model)
|