m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

140 lines
5.9 KiB

# --------------------------------------------------------------------------
# Copyright (c) Microsoft, Intel Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import logging
import tempfile
import traceback
from pathlib import Path
import onnx
import onnxruntime
from onnxruntime.tools.symbolic_shape_infer import SymbolicShapeInference
from .quant_utils import add_pre_process_metadata
logger = logging.getLogger(__name__)
def quant_pre_process(
input_model_path: str,
output_model_path: str,
skip_optimization: bool = False,
skip_onnx_shape: bool = False,
skip_symbolic_shape: bool = False,
auto_merge: bool = False,
int_max: int = 2**31 - 1,
guess_output_rank: bool = False,
verbose: int = 0,
save_as_external_data: bool = False,
all_tensors_to_one_file: bool = False,
external_data_location: str = "./",
external_data_size_threshold: int = 1024,
) -> None:
"""Shape inference and model optimization, in preparation for quantization.
Args:
input_model_path: Path to the input model file")
output_model_path: Path to the output model file
skip_optimization: Skip model optimization step if true. This may result in ONNX shape
inference failure for some models.
skip_onnx_shape: Skip ONNX shape inference. Symbolic shape inference is most effective
with transformer based models. Skipping all shape inferences may
reduce the effectiveness of quantization, as a tensor with unknown
shape can not be quantized.
skip_symbolic_shape: Skip symbolic shape inference. Symbolic shape inference is most
effective with transformer based models. Skipping all shape
inferences may reduce the effectiveness of quantization, as a tensor
with unknown shape can not be quantized.
auto_merge: For symbolic shape inference, automatically merge symbolic dims when
conflict happens.
int_max: For symbolic shape inference, specify the maximum value for integer to be
treated as boundless for ops like slice
guess_output_rank: Guess output rank to be the same as input 0 for unknown ops
verbose: Logs detailed info of inference, 0: turn off, 1: warnings, 3: detailed
save_as_external_data: Saving an ONNX model to external data
all_tensors_to_one_file: Saving all the external data to one file
external_data_location: The file location to save the external file
external_data_size_threshold: The size threshold for external data
"""
with tempfile.TemporaryDirectory(prefix="pre.quant.") as quant_tmp_dir:
temp_path = Path(quant_tmp_dir)
model = None
if not skip_symbolic_shape:
logger.info("Performing symbolic shape inference...")
model = SymbolicShapeInference.infer_shapes(
onnx.load(input_model_path),
int_max,
auto_merge,
guess_output_rank,
verbose,
)
if not skip_optimization:
# Use ORT optimizers (native code) to optimize model
if not skip_symbolic_shape:
# Need to save the inferenced model to file so as to run the optimizer
input_model_path = str(temp_path / "symbolic_shape_inferred.onnx")
onnx.save(model, input_model_path)
model = None
opt_model_path = str(temp_path / "optimized.onnx")
try:
sess_option = onnxruntime.SessionOptions()
sess_option.optimized_model_filepath = opt_model_path
sess_option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC
_ = onnxruntime.InferenceSession(input_model_path, sess_option, providers=["CPUExecutionProvider"])
except Exception as e:
logger.error(
"ONNX Runtime Model Optimization Failed! Consider rerun with option `--skip_optimization'."
)
logger.error(traceback.format_exc())
input_model_path = opt_model_path
if not skip_onnx_shape:
# ONNX shape inference.
# According to docs, infer_shapes_path should be used for 2G+ models.
# If the skip optimization is specified, we could be dealing with a
# large model. So be on the safe side, save the model
if model is not None:
input_model_path = str(temp_path / "symbolic_shape_inferred.onnx")
if save_as_external_data:
onnx.save_model(
model,
input_model_path,
save_as_external_data=True,
all_tensors_to_one_file=all_tensors_to_one_file,
size_threshold=external_data_size_threshold,
convert_attribute=False,
)
else:
onnx.save(model, input_model_path)
model = None
inferred_model_path = str(temp_path / "onnx_shape_inferred.onnx")
onnx.shape_inference.infer_shapes_path(input_model_path, inferred_model_path)
model = onnx.load(inferred_model_path)
if model is None:
model = onnx.load(input_model_path)
add_pre_process_metadata(model)
if save_as_external_data:
onnx.save_model(
model,
output_model_path,
save_as_external_data=True,
all_tensors_to_one_file=all_tensors_to_one_file,
location=external_data_location,
size_threshold=external_data_size_threshold,
convert_attribute=False,
)
else:
onnx.save(model, output_model_path)