m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

85 lines
3.2 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
# An offline standalone script to declassify an ONNX model by randomizing the tensor data in initializers.
# The ORT Performance may change especially on generative models.
import argparse
from pathlib import Path
import numpy as np
from onnx import load_model, numpy_helper, onnx_pb, save_model
# An experimental small value for differentiating shape data and weights.
# The tensor data with larger size can't be shape data.
# User may adjust this value as needed.
SIZE_THRESHOLD = 10
def graph_iterator(model, func):
graph_queue = [model.graph]
while graph_queue:
graph = graph_queue.pop(0)
func(graph)
for node in graph.node:
for attr in node.attribute:
if attr.type == onnx_pb.AttributeProto.AttributeType.GRAPH:
assert isinstance(attr.g, onnx_pb.GraphProto)
graph_queue.append(attr.g)
if attr.type == onnx_pb.AttributeProto.AttributeType.GRAPHS:
for g in attr.graphs:
assert isinstance(g, onnx_pb.GraphProto)
graph_queue.append(g)
def randomize_graph_initializer(graph):
for i_tensor in graph.initializer:
array = numpy_helper.to_array(i_tensor)
# TODO: need to find a better way to differentiate shape data and weights.
if array.size > SIZE_THRESHOLD:
random_array = np.random.uniform(array.min(), array.max(), size=array.shape).astype(array.dtype)
o_tensor = numpy_helper.from_array(random_array, i_tensor.name)
i_tensor.CopyFrom(o_tensor)
def main():
parser = argparse.ArgumentParser(description="Randomize the weights of an ONNX model")
parser.add_argument("-m", type=str, required=True, help="input onnx model path")
parser.add_argument("-o", type=str, required=True, help="output onnx model path")
parser.add_argument(
"--use_external_data_format",
required=False,
action="store_true",
help="Store or Save in external data format",
)
parser.add_argument(
"--all_tensors_to_one_file",
required=False,
action="store_true",
help="Save all tensors to one file",
)
args = parser.parse_args()
data_path = None
if args.use_external_data_format:
if Path(args.m).parent == Path(args.o).parent:
raise RuntimeError("Please specify output directory with different parent path to input directory.")
if args.all_tensors_to_one_file:
data_path = Path(args.o).name + ".data"
Path(args.o).parent.mkdir(parents=True, exist_ok=True)
onnx_model = load_model(args.m, load_external_data=args.use_external_data_format)
graph_iterator(onnx_model, randomize_graph_initializer)
save_model(
onnx_model,
args.o,
save_as_external_data=args.use_external_data_format,
all_tensors_to_one_file=args.all_tensors_to_one_file,
location=data_path,
)
if __name__ == "__main__":
main()