m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

131 lines
5.7 KiB

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import inspect
from collections import abc
import torch
def _parse_inputs_for_onnx_export(all_input_parameters, inputs, kwargs):
# extracted from https://github.com/microsoft/onnxruntime/blob/239c6ad3f021ff7cc2e6247eb074bd4208dc11e2/orttraining/orttraining/python/training/ortmodule/_io.py#L433 # noqa
def _add_input(name, input):
"""Returns number of expanded inputs that _add_input processed"""
if input is None:
# Drop all None inputs and return 0.
return 0
num_expanded_non_none_inputs = 0
if isinstance(input, abc.Sequence):
# If the input is a sequence (like a list), expand the list so that
# each element of the list is an input by itself.
for i, val in enumerate(input):
# Name each input with the index appended to the original name of the
# argument.
num_expanded_non_none_inputs += _add_input(f"{name}_{i}", val)
# Return here since the list by itself is not a valid input.
# All the elements of the list have already been added as inputs individually.
return num_expanded_non_none_inputs
elif isinstance(input, abc.Mapping):
# If the input is a mapping (like a dict), expand the dict so that
# each element of the dict is an input by itself.
for key, val in input.items():
num_expanded_non_none_inputs += _add_input(f"{name}_{key}", val)
# Return here since the dict by itself is not a valid input.
# All the elements of the dict have already been added as inputs individually.
return num_expanded_non_none_inputs
# InputInfo should contain all the names irrespective of whether they are
# a part of the onnx graph or not.
input_names.append(name)
# A single input non none input was processed, return 1
return 1
input_names = []
var_positional_idx = 0
num_expanded_non_none_positional_inputs = 0
for input_idx, input_parameter in enumerate(all_input_parameters):
if input_parameter.kind == inspect.Parameter.VAR_POSITIONAL:
# VAR_POSITIONAL parameter carries all *args parameters from original forward method
for args_i in range(input_idx, len(inputs)):
name = f"{input_parameter.name}_{var_positional_idx}"
var_positional_idx += 1
inp = inputs[args_i]
num_expanded_non_none_positional_inputs += _add_input(name, inp)
elif (
input_parameter.kind == inspect.Parameter.POSITIONAL_ONLY
or input_parameter.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
or input_parameter.kind == inspect.Parameter.KEYWORD_ONLY
):
# All positional non-*args and non-**kwargs are processed here
name = input_parameter.name
inp = None
input_idx += var_positional_idx
is_positional = True
if input_idx < len(inputs) and inputs[input_idx] is not None:
inp = inputs[input_idx]
elif name in kwargs and kwargs[name] is not None:
inp = kwargs[name]
is_positional = False
num_expanded_non_none_inputs_local = _add_input(name, inp)
if is_positional:
num_expanded_non_none_positional_inputs += num_expanded_non_none_inputs_local
elif input_parameter.kind == inspect.Parameter.VAR_KEYWORD:
# **kwargs is always the last argument of forward()
for name, inp in kwargs.items():
if name not in input_names:
_add_input(name, inp)
return input_names
def _flatten_module_input(names, args, kwargs):
"""Flatten args and kwargs in a single tuple of tensors."""
# extracted from https://github.com/microsoft/onnxruntime/blob/239c6ad3f021ff7cc2e6247eb074bd4208dc11e2/orttraining/orttraining/python/training/ortmodule/_io.py#L110 # noqa
def is_primitive_type(value):
return type(value) in {int, bool, float}
def to_tensor(value):
return torch.tensor(value)
ret = [to_tensor(arg) if is_primitive_type(arg) else arg for arg in args]
ret += [
to_tensor(kwargs[name]) if is_primitive_type(kwargs[name]) else kwargs[name] for name in names if name in kwargs
]
# if kwargs is empty, append an empty dictionary at the end of the sample inputs to make exporter
# happy. This is because the exporter is confused with kwargs and dictionary inputs otherwise.
if not kwargs:
ret.append({})
return tuple(ret)
def infer_input_info(module: torch.nn.Module, *inputs, **kwargs):
"""
Infer the input names and order from the arguments used to execute a PyTorch module for usage exporting
the model via torch.onnx.export.
Assumes model is on CPU. Use `module.to(torch.device('cpu'))` if it isn't.
Example usage:
input_names, inputs_as_tuple = infer_input_info(module, ...)
torch.onnx.export(module, inputs_as_type, 'model.onnx', input_names=input_names, output_names=[...], ...)
:param module: Module
:param inputs: Positional inputs
:param kwargs: Keyword argument inputs
:return: Tuple of ordered input names and input values. These can be used directly with torch.onnx.export as the
`input_names` and `inputs` arguments.
"""
module_parameters = inspect.signature(module.forward).parameters.values()
input_names = _parse_inputs_for_onnx_export(module_parameters, inputs, kwargs)
inputs_as_tuple = _flatten_module_input(input_names, inputs, kwargs)
return input_names, inputs_as_tuple