m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

915 lines
30 KiB

# Copyright (c) Microsoft Corporation. All rights reserved.
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Benchmarking the inference of pretrained transformer models.
PyTorch/TorchScript benchmark is based on https://github.com/huggingface/transformers/blob/master/examples/benchmarks.py.
One difference is that random input_ids is generated in this benchmark.
For onnxruntime, this script will convert a pretrained model to ONNX, and optimize it when -o parameter is used.
Example commands:
Export all models to ONNX, optimize and validate them:
python benchmark.py -b 0 -o -v -i 1 2 3
Run OnnxRuntime on GPU for all models:
python benchmark.py -g
Run OnnxRuntime on GPU for all models with fp32 optimization:
python benchmark.py -g -o
Run OnnxRuntime on GPU with fp16 optimization:
python benchmark.py -g -o -p "fp16"
Run TorchScript on GPU for all models:
python benchmark.py -e torchscript -g
Run TorchScript on GPU for all models with fp16:
python benchmark.py -e torchscript -g -p "fp16"
Run ONNXRuntime and TorchScript on CPU for all models with quantization:
python benchmark.py -e torchscript onnxruntime -p "int8" -o
Run OnnxRuntime with the ROCM provider and graph optimization script:
python benchmark.py -g -m bert-base-cased --provider rocm --optimizer_info by_script --disable_embed_layer_norm
It is recommended to use run_benchmark.sh to launch benchmark.
"""
import argparse
import logging
import os
import timeit
from datetime import datetime
from enum import Enum
import numpy
import onnx
import psutil
from benchmark_helper import (
ConfigModifier,
OptimizerInfo,
Precision,
allocateOutputBuffers,
create_onnxruntime_session,
get_latency_result,
inference_ort,
inference_ort_with_io_binding,
output_details,
output_fusion_statistics,
output_summary,
setup_logger,
)
from fusion_options import FusionOptions
from onnx_exporter import (
create_onnxruntime_input,
export_onnx_model_from_pt,
export_onnx_model_from_tf,
load_pretrained_model,
)
from packaging import version
from quantize_helper import QuantizeHelper
logger = logging.getLogger("")
from huggingface_models import MODEL_CLASSES, MODELS
cpu_count = psutil.cpu_count(logical=False)
# Set OMP environment variable before importing onnxruntime or torch.
if "OMP_NUM_THREADS" not in os.environ:
os.environ["OMP_NUM_THREADS"] = str(cpu_count)
import torch
from transformers import AutoConfig, AutoModel, AutoTokenizer, GPT2Model, LxmertConfig
def run_onnxruntime(
use_gpu,
provider,
model_names,
model_class,
config_modifier,
precision,
num_threads,
batch_sizes,
sequence_lengths,
repeat_times,
input_counts,
optimizer_info,
validate_onnx,
cache_dir,
onnx_dir,
verbose,
overwrite,
disable_ort_io_binding,
use_raw_attention_mask,
model_fusion_statistics,
model_source,
args,
):
import onnxruntime
results = []
if (
use_gpu
and ("CUDAExecutionProvider" not in onnxruntime.get_available_providers())
and ("ROCMExecutionProvider" not in onnxruntime.get_available_providers())
and ("DmlExecutionProvider" not in onnxruntime.get_available_providers())
):
logger.error(
"Please install onnxruntime-gpu or onnxruntime-directml package instead of onnxruntime, and use a machine with GPU for testing gpu performance."
)
return results
warm_up_repeat = 0
if provider == "tensorrt":
optimizer_info = OptimizerInfo.NOOPT
warm_up_repeat = 5
if "TensorrtExecutionProvider" not in onnxruntime.get_available_providers():
logger.error(
"Please install onnxruntime-gpu-tensorrt package, and use a machine with GPU for testing gpu performance."
)
return results
if optimizer_info == OptimizerInfo.NOOPT:
logger.warning(
f"OptimizerInfo is set to {optimizer_info}, graph optimizations specified in FusionOptions are not applied."
)
for model_name in model_names:
all_input_names = MODELS[model_name][0]
for num_inputs in input_counts:
if num_inputs > len(all_input_names):
break
input_names = all_input_names[:num_inputs]
args.model_type = MODELS[model_name][3]
fusion_options = FusionOptions.parse(args)
if "pt" in model_source:
with torch.no_grad():
(
onnx_model_file,
is_valid_onnx_model,
vocab_size,
max_sequence_length,
) = export_onnx_model_from_pt(
model_name,
MODELS[model_name][1],
MODELS[model_name][2],
MODELS[model_name][3],
model_class,
config_modifier,
cache_dir,
onnx_dir,
input_names,
use_gpu,
precision,
optimizer_info,
validate_onnx,
use_raw_attention_mask,
overwrite,
model_fusion_statistics,
fusion_options,
)
if "tf" in model_source:
(onnx_model_file, is_valid_onnx_model, vocab_size, max_sequence_length,) = export_onnx_model_from_tf(
model_name,
MODELS[model_name][1],
MODELS[model_name][2],
MODELS[model_name][3],
model_class,
config_modifier,
cache_dir,
onnx_dir,
input_names,
use_gpu,
precision,
optimizer_info,
validate_onnx,
use_raw_attention_mask,
overwrite,
model_fusion_statistics,
fusion_options,
)
if not is_valid_onnx_model:
continue
ort_session = create_onnxruntime_session(
onnx_model_file,
use_gpu,
provider,
enable_all_optimization=True,
num_threads=num_threads,
verbose=verbose,
)
if ort_session is None:
continue
ort_output_names = [node_arg.name for node_arg in ort_session.get_outputs()]
output_buffers = []
device = "cuda" if use_gpu else "cpu"
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
max_last_state_size = numpy.prod(
[
max(batch_sizes),
max(sequence_lengths),
max(vocab_size, config.hidden_size),
]
)
max_pooler_size = numpy.prod([max(batch_sizes), config.hidden_size])
for batch_size in batch_sizes:
if batch_size <= 0:
continue
for sequence_length in sequence_lengths:
if max_sequence_length is not None and sequence_length > max_sequence_length:
continue
input_value_type = numpy.int64 if "pt" in model_source else numpy.int32
ort_inputs = create_onnxruntime_input(
vocab_size,
batch_size,
sequence_length,
input_names,
config,
input_value_type,
)
result_template = {
"engine": "onnxruntime",
"version": onnxruntime.__version__,
"providers": provider,
"device": device,
"optimizer": optimizer_info,
"precision": precision,
"io_binding": not disable_ort_io_binding,
"model_name": model_name,
"inputs": num_inputs,
"threads": num_threads,
"batch_size": batch_size,
"sequence_length": sequence_length,
"custom_layer_num": config_modifier.get_layer_num(),
"datetime": str(datetime.now()),
}
logger.info(
"Run onnxruntime on {} with input shape {}".format(model_name, [batch_size, sequence_length])
)
if disable_ort_io_binding:
result = inference_ort(
ort_session,
ort_inputs,
result_template,
repeat_times,
batch_size,
warm_up_repeat,
)
else:
# Get output sizes from a dummy ort run
ort_outputs = ort_session.run(ort_output_names, ort_inputs)
output_buffer_max_sizes = [max_last_state_size]
for i in range(len(ort_outputs)):
if i == 2 and MODELS[model_name][3] == "gpt":
# past state output max size
output_buffer_max_sizes.append(max_pooler_size)
else:
output_buffer_max_sizes.append(max_last_state_size)
data_type = numpy.longlong if "pt" in model_source else numpy.intc
result = inference_ort_with_io_binding(
ort_session,
ort_inputs,
result_template,
repeat_times,
ort_output_names,
ort_outputs,
output_buffers,
output_buffer_max_sizes,
batch_size,
device,
data_type,
warm_up_repeat,
)
logger.info(result)
results.append(result)
return results
def run_pytorch(
use_gpu,
model_names,
model_class,
config_modifier,
precision,
num_threads,
batch_sizes,
sequence_lengths,
repeat_times,
torchscript,
torch2,
cache_dir,
verbose,
):
results = []
if use_gpu and not torch.cuda.is_available():
logger.error("Please install PyTorch with Cuda, and use a machine with GPU for testing gpu performance.")
return results
torch.set_grad_enabled(False)
for model_name in model_names:
config = AutoConfig.from_pretrained(model_name, torchscript=torchscript, cache_dir=cache_dir)
config_modifier.modify(config)
model = load_pretrained_model(
model_name,
config=config,
cache_dir=cache_dir,
custom_model_class=model_class,
)
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
max_input_size = (
tokenizer.max_model_input_sizes[model_name] if model_name in tokenizer.max_model_input_sizes else 1024
)
logger.debug(f"Model {model}")
logger.debug(f"Number of parameters {model.num_parameters()}")
if precision == Precision.FLOAT16:
model.half()
device = torch.device("cuda:0" if use_gpu else "cpu")
model.to(device)
if precision == Precision.INT8:
model = QuantizeHelper.quantize_torch_model(model)
for batch_size in batch_sizes:
if batch_size <= 0:
continue
for sequence_length in sequence_lengths:
if max_input_size is not None and sequence_length > max_input_size:
continue
logger.info("Run PyTorch on {} with input shape {}".format(model_name, [batch_size, sequence_length]))
input_ids = torch.randint(
low=0,
high=config.vocab_size - 1,
size=(batch_size, sequence_length),
dtype=torch.long,
device=device,
)
try:
inference = (
torch.jit.trace(model, input_ids) if torchscript else torch.compile(model) if torch2 else model
)
inference(input_ids)
runtimes = timeit.repeat(lambda: inference(input_ids), repeat=repeat_times, number=1)
result = {
"engine": "torchscript" if torchscript else "torch2" if torch2 else "torch",
"version": torch.__version__,
"providers": "NA",
"device": "cuda" if use_gpu else "cpu",
"optimizer": "",
"precision": precision,
"io_binding": "",
"model_name": model_name,
"inputs": 1,
"threads": num_threads,
"batch_size": batch_size,
"sequence_length": sequence_length,
"custom_layer_num": config_modifier.get_layer_num(),
"datetime": str(datetime.now()),
}
result.update(get_latency_result(runtimes, batch_size))
logger.info(result)
results.append(result)
except RuntimeError as e:
logger.exception(e)
torch.cuda.empty_cache()
return results
def run_with_tf_optimizations(do_eager_mode: bool, use_xla: bool):
from functools import wraps
import tensorflow as tf
def run_func(func):
@wraps(func)
def run_in_eager_mode(*args, **kwargs):
return func(*args, **kwargs)
@wraps(func)
@tf.function(experimental_compile=use_xla)
def run_in_graph_mode(*args, **kwargs):
return func(*args, **kwargs)
if do_eager_mode is True:
assert (
use_xla is False
), "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`."
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def run_tensorflow(
use_gpu,
model_names,
model_class,
config_modifier,
precision,
num_threads,
batch_sizes,
sequence_lengths,
repeat_times,
cache_dir,
verbose,
):
results = []
import tensorflow as tf
tf.config.threading.set_intra_op_parallelism_threads(num_threads)
if not use_gpu:
tf.config.set_visible_devices([], "GPU")
if use_gpu and not tf.test.is_built_with_cuda():
logger.error("Please install Tensorflow-gpu, and use a machine with GPU for testing gpu performance.")
return results
if use_gpu: # Restrict TensorFlow to only use the first GPU
physical_devices = tf.config.list_physical_devices("GPU")
try:
tf.config.set_visible_devices(physical_devices[0], "GPU")
tf.config.experimental.set_memory_growth(physical_devices[0], True)
tf.distribute.OneDeviceStrategy(device="/gpu:0")
except RuntimeError as e:
logger.exception(e)
if precision == Precision.FLOAT16 or precision == Precision.INT8:
raise NotImplementedError("Mixed precision is currently not supported.")
for model_name in model_names:
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
config_modifier.modify(config)
model = load_pretrained_model(
model_name,
config=config,
cache_dir=cache_dir,
custom_model_class=model_class,
is_tf_model=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
max_input_size = (
tokenizer.max_model_input_sizes[model_name] if model_name in tokenizer.max_model_input_sizes else 1024
)
for batch_size in batch_sizes:
if batch_size <= 0:
continue
for sequence_length in sequence_lengths:
if max_input_size is not None and sequence_length > max_input_size:
continue
logger.info(
"Run Tensorflow on {} with input shape {}".format(model_name, [batch_size, sequence_length])
)
import random
rng = random.Random()
values = [rng.randint(0, config.vocab_size - 1) for i in range(batch_size * sequence_length)]
input_ids = tf.constant(values, shape=(batch_size, sequence_length), dtype=tf.int32)
try:
# Disable both for better inference perf
@run_with_tf_optimizations(do_eager_mode=False, use_xla=False)
def encoder_forward():
return model(input_ids, training=False)
@run_with_tf_optimizations(do_eager_mode=False, use_xla=False)
def encoder_decoder_forward():
return model(input_ids, decoder_input_ids=input_ids, training=False)
@run_with_tf_optimizations(do_eager_mode=False, use_xla=False)
def lxmert_forward():
feats = tf.random.normal([1, 1, config.visual_feat_dim])
pos = tf.random.normal([1, 1, config.visual_pos_dim])
return model(
input_ids,
visual_feats=feats,
visual_pos=pos,
training=False,
)
inference = encoder_forward
if config.is_encoder_decoder:
inference = encoder_decoder_forward
elif isinstance(config, LxmertConfig):
inference = lxmert_forward
inference()
runtimes = timeit.repeat(lambda: inference(), repeat=repeat_times, number=1)
result = {
"engine": "tensorflow",
"version": tf.__version__,
"providers": "NA",
"device": "cuda" if use_gpu else "cpu",
"optimizer": "",
"precision": precision,
"io_binding": "",
"model_name": model_name,
"inputs": 1,
"threads": num_threads,
"batch_size": batch_size,
"sequence_length": sequence_length,
"custom_layer_num": config_modifier.get_layer_num(),
"datetime": str(datetime.now()),
}
result.update(get_latency_result(runtimes, batch_size))
logger.info(result)
results.append(result)
except RuntimeError as e:
logger.exception(e)
from numba import cuda
device = cuda.get_current_device()
device.reset()
return results
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--models",
required=False,
nargs="+",
type=str,
default=["bert-base-cased", "roberta-base", "gpt2"],
choices=list(MODELS.keys()),
help="Pre-trained models in the list: " + ", ".join(MODELS.keys()),
)
parser.add_argument(
"--model_source",
required=False,
nargs=1,
type=str,
default="pt",
choices=["pt", "tf"],
help="Export onnx from pt or tf",
)
parser.add_argument(
"--model_class",
required=False,
type=str,
default=None,
choices=list(MODEL_CLASSES),
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES),
)
parser.add_argument(
"-e",
"--engines",
required=False,
nargs="+",
type=str,
default=["onnxruntime"],
choices=["onnxruntime", "torch", "torch2", "torchscript", "tensorflow"],
help="Engines to benchmark",
)
parser.add_argument(
"-c",
"--cache_dir",
required=False,
type=str,
default=os.path.join(".", "cache_models"),
help="Directory to cache pre-trained models",
)
parser.add_argument(
"--onnx_dir",
required=False,
type=str,
default=os.path.join(".", "onnx_models"),
help="Directory to store onnx models",
)
parser.add_argument("-g", "--use_gpu", required=False, action="store_true", help="Run on gpu device")
parser.add_argument(
"--provider",
required=False,
type=str,
default=None,
help="Execution provider to use",
)
parser.add_argument(
"-p",
"--precision",
type=Precision,
default=Precision.FLOAT32,
choices=list(Precision),
help="Precision of model to run. fp32 for full precision, fp16 for half precision, and int8 for quantization",
)
parser.add_argument("--verbose", required=False, action="store_true", help="Print more information")
parser.add_argument(
"--overwrite",
required=False,
action="store_true",
help="Overwrite existing models",
)
parser.add_argument(
"-o",
"--optimizer_info",
type=OptimizerInfo,
default=OptimizerInfo.BYSCRIPT,
choices=list(OptimizerInfo),
help="Optimizer info: Use optimizer.py to optimize onnx model as default. Can also choose from by_ort and no_opt",
)
parser.add_argument(
"-v",
"--validate_onnx",
required=False,
action="store_true",
help="Validate ONNX model",
)
parser.add_argument(
"-f",
"--fusion_csv",
required=False,
default=None,
help="CSV file for saving summary results of graph optimization.",
)
parser.add_argument(
"-d",
"--detail_csv",
required=False,
default=None,
help="CSV file for saving detail results.",
)
parser.add_argument(
"-r",
"--result_csv",
required=False,
default=None,
help="CSV file for saving summary results.",
)
parser.add_argument(
"-i",
"--input_counts",
required=False,
nargs="+",
default=[1],
type=int,
choices=[1, 2, 3],
help="Number of ONNX model inputs. Please use 1 for fair comparison with Torch or TorchScript.",
)
parser.add_argument(
"-t",
"--test_times",
required=False,
default=100,
type=int,
help="Number of repeat times to get average inference latency.",
)
parser.add_argument("-b", "--batch_sizes", nargs="+", type=int, default=[1])
parser.add_argument(
"-s",
"--sequence_lengths",
nargs="+",
type=int,
default=[4, 8, 16, 32, 64, 128, 256],
)
parser.add_argument(
"--disable_ort_io_binding",
required=False,
action="store_true",
help="Disable running ONNX Runtime with binded inputs and outputs. ",
)
parser.set_defaults(disable_ort_io_binding=False)
parser.add_argument(
"-n",
"--num_threads",
required=False,
nargs="+",
type=int,
default=[0],
help="Threads to use",
)
parser.add_argument(
"--force_num_layers",
required=False,
type=int,
default=None,
help="Manually set the model's layer number",
)
FusionOptions.add_arguments(parser)
args = parser.parse_args()
return args
def main():
args = parse_arguments()
setup_logger(args.verbose)
if args.precision == Precision.FLOAT16 and not args.use_gpu:
logger.error("fp16 is for GPU only")
return
if args.precision == Precision.INT8 and args.use_gpu:
logger.error("int8 is for CPU only")
return
args.num_threads = sorted(set(cpu_count if x <= 0 else x for x in args.num_threads))
logger.info(f"Arguments: {args}")
if not os.path.exists(args.cache_dir):
try:
os.mkdir(args.cache_dir)
except OSError:
logger.error("Creation of the directory %s failed" % args.cache_dir)
enable_torch = "torch" in args.engines
enable_torch2 = "torch2" in args.engines
enable_torchscript = "torchscript" in args.engines
enable_onnxruntime = "onnxruntime" in args.engines
enable_tensorflow = "tensorflow" in args.engines
if enable_torch2 and version.parse(torch.__version__) < version.parse("2.0.0"):
logger.error(f"PyTorch version must be >=2.0.0 and you are using {torch.__version__}")
return
config_modifier = ConfigModifier(args.force_num_layers)
results = []
for num_threads in args.num_threads:
torch.set_num_threads(num_threads)
logger.debug(torch.__config__.parallel_info())
if enable_torch or enable_torch2 or enable_torchscript:
if args.input_counts != [1]:
logger.warning("--input_counts is not implemented for torch or torchscript engine.")
if enable_torchscript:
results += run_pytorch(
args.use_gpu,
args.models,
args.model_class,
config_modifier,
args.precision,
num_threads,
args.batch_sizes,
args.sequence_lengths,
args.test_times,
True,
False,
args.cache_dir,
args.verbose,
)
if enable_torch:
results += run_pytorch(
args.use_gpu,
args.models,
args.model_class,
config_modifier,
args.precision,
num_threads,
args.batch_sizes,
args.sequence_lengths,
args.test_times,
False,
False,
args.cache_dir,
args.verbose,
)
if enable_torch2:
results += run_pytorch(
args.use_gpu,
args.models,
args.model_class,
config_modifier,
args.precision,
num_threads,
args.batch_sizes,
args.sequence_lengths,
args.test_times,
False,
True,
args.cache_dir,
args.verbose,
)
if enable_tensorflow:
results += run_tensorflow(
args.use_gpu,
args.models,
args.model_class,
config_modifier,
args.precision,
num_threads,
args.batch_sizes,
args.sequence_lengths,
args.test_times,
args.cache_dir,
args.verbose,
)
model_fusion_statistics = {}
if enable_onnxruntime:
try:
use_raw_attention_mask = not args.use_mask_index
results += run_onnxruntime(
args.use_gpu,
args.provider,
args.models,
args.model_class,
config_modifier,
args.precision,
num_threads,
args.batch_sizes,
args.sequence_lengths,
args.test_times,
args.input_counts,
args.optimizer_info,
args.validate_onnx,
args.cache_dir,
args.onnx_dir,
args.verbose,
args.overwrite,
args.disable_ort_io_binding,
use_raw_attention_mask,
model_fusion_statistics,
args.model_source,
args,
)
except:
logger.error(f"Exception", exc_info=True)
time_stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
if model_fusion_statistics:
csv_filename = args.fusion_csv or f"benchmark_fusion_{time_stamp}.csv"
output_fusion_statistics(model_fusion_statistics, csv_filename)
if len(results) == 0:
if args.batch_sizes != [0]:
logger.warning("No any result avaiable.")
return
csv_filename = args.detail_csv or f"benchmark_detail_{time_stamp}.csv"
output_details(results, csv_filename)
csv_filename = args.result_csv or f"benchmark_summary_{time_stamp}.csv"
output_summary(results, csv_filename, args)
if __name__ == "__main__":
main()