You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
915 lines
30 KiB
915 lines
30 KiB
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
# Copyright 2018 The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Benchmarking the inference of pretrained transformer models.
|
|
PyTorch/TorchScript benchmark is based on https://github.com/huggingface/transformers/blob/master/examples/benchmarks.py.
|
|
One difference is that random input_ids is generated in this benchmark.
|
|
|
|
For onnxruntime, this script will convert a pretrained model to ONNX, and optimize it when -o parameter is used.
|
|
|
|
Example commands:
|
|
Export all models to ONNX, optimize and validate them:
|
|
python benchmark.py -b 0 -o -v -i 1 2 3
|
|
Run OnnxRuntime on GPU for all models:
|
|
python benchmark.py -g
|
|
Run OnnxRuntime on GPU for all models with fp32 optimization:
|
|
python benchmark.py -g -o
|
|
Run OnnxRuntime on GPU with fp16 optimization:
|
|
python benchmark.py -g -o -p "fp16"
|
|
Run TorchScript on GPU for all models:
|
|
python benchmark.py -e torchscript -g
|
|
Run TorchScript on GPU for all models with fp16:
|
|
python benchmark.py -e torchscript -g -p "fp16"
|
|
Run ONNXRuntime and TorchScript on CPU for all models with quantization:
|
|
python benchmark.py -e torchscript onnxruntime -p "int8" -o
|
|
Run OnnxRuntime with the ROCM provider and graph optimization script:
|
|
python benchmark.py -g -m bert-base-cased --provider rocm --optimizer_info by_script --disable_embed_layer_norm
|
|
|
|
It is recommended to use run_benchmark.sh to launch benchmark.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import timeit
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
|
|
import numpy
|
|
import onnx
|
|
import psutil
|
|
from benchmark_helper import (
|
|
ConfigModifier,
|
|
OptimizerInfo,
|
|
Precision,
|
|
allocateOutputBuffers,
|
|
create_onnxruntime_session,
|
|
get_latency_result,
|
|
inference_ort,
|
|
inference_ort_with_io_binding,
|
|
output_details,
|
|
output_fusion_statistics,
|
|
output_summary,
|
|
setup_logger,
|
|
)
|
|
from fusion_options import FusionOptions
|
|
from onnx_exporter import (
|
|
create_onnxruntime_input,
|
|
export_onnx_model_from_pt,
|
|
export_onnx_model_from_tf,
|
|
load_pretrained_model,
|
|
)
|
|
from packaging import version
|
|
from quantize_helper import QuantizeHelper
|
|
|
|
logger = logging.getLogger("")
|
|
|
|
from huggingface_models import MODEL_CLASSES, MODELS
|
|
|
|
cpu_count = psutil.cpu_count(logical=False)
|
|
|
|
# Set OMP environment variable before importing onnxruntime or torch.
|
|
if "OMP_NUM_THREADS" not in os.environ:
|
|
os.environ["OMP_NUM_THREADS"] = str(cpu_count)
|
|
|
|
import torch
|
|
from transformers import AutoConfig, AutoModel, AutoTokenizer, GPT2Model, LxmertConfig
|
|
|
|
|
|
def run_onnxruntime(
|
|
use_gpu,
|
|
provider,
|
|
model_names,
|
|
model_class,
|
|
config_modifier,
|
|
precision,
|
|
num_threads,
|
|
batch_sizes,
|
|
sequence_lengths,
|
|
repeat_times,
|
|
input_counts,
|
|
optimizer_info,
|
|
validate_onnx,
|
|
cache_dir,
|
|
onnx_dir,
|
|
verbose,
|
|
overwrite,
|
|
disable_ort_io_binding,
|
|
use_raw_attention_mask,
|
|
model_fusion_statistics,
|
|
model_source,
|
|
args,
|
|
):
|
|
import onnxruntime
|
|
|
|
results = []
|
|
if (
|
|
use_gpu
|
|
and ("CUDAExecutionProvider" not in onnxruntime.get_available_providers())
|
|
and ("ROCMExecutionProvider" not in onnxruntime.get_available_providers())
|
|
and ("DmlExecutionProvider" not in onnxruntime.get_available_providers())
|
|
):
|
|
logger.error(
|
|
"Please install onnxruntime-gpu or onnxruntime-directml package instead of onnxruntime, and use a machine with GPU for testing gpu performance."
|
|
)
|
|
return results
|
|
|
|
warm_up_repeat = 0
|
|
if provider == "tensorrt":
|
|
optimizer_info = OptimizerInfo.NOOPT
|
|
warm_up_repeat = 5
|
|
if "TensorrtExecutionProvider" not in onnxruntime.get_available_providers():
|
|
logger.error(
|
|
"Please install onnxruntime-gpu-tensorrt package, and use a machine with GPU for testing gpu performance."
|
|
)
|
|
return results
|
|
|
|
if optimizer_info == OptimizerInfo.NOOPT:
|
|
logger.warning(
|
|
f"OptimizerInfo is set to {optimizer_info}, graph optimizations specified in FusionOptions are not applied."
|
|
)
|
|
|
|
for model_name in model_names:
|
|
all_input_names = MODELS[model_name][0]
|
|
for num_inputs in input_counts:
|
|
if num_inputs > len(all_input_names):
|
|
break
|
|
|
|
input_names = all_input_names[:num_inputs]
|
|
args.model_type = MODELS[model_name][3]
|
|
fusion_options = FusionOptions.parse(args)
|
|
|
|
if "pt" in model_source:
|
|
with torch.no_grad():
|
|
(
|
|
onnx_model_file,
|
|
is_valid_onnx_model,
|
|
vocab_size,
|
|
max_sequence_length,
|
|
) = export_onnx_model_from_pt(
|
|
model_name,
|
|
MODELS[model_name][1],
|
|
MODELS[model_name][2],
|
|
MODELS[model_name][3],
|
|
model_class,
|
|
config_modifier,
|
|
cache_dir,
|
|
onnx_dir,
|
|
input_names,
|
|
use_gpu,
|
|
precision,
|
|
optimizer_info,
|
|
validate_onnx,
|
|
use_raw_attention_mask,
|
|
overwrite,
|
|
model_fusion_statistics,
|
|
fusion_options,
|
|
)
|
|
if "tf" in model_source:
|
|
(onnx_model_file, is_valid_onnx_model, vocab_size, max_sequence_length,) = export_onnx_model_from_tf(
|
|
model_name,
|
|
MODELS[model_name][1],
|
|
MODELS[model_name][2],
|
|
MODELS[model_name][3],
|
|
model_class,
|
|
config_modifier,
|
|
cache_dir,
|
|
onnx_dir,
|
|
input_names,
|
|
use_gpu,
|
|
precision,
|
|
optimizer_info,
|
|
validate_onnx,
|
|
use_raw_attention_mask,
|
|
overwrite,
|
|
model_fusion_statistics,
|
|
fusion_options,
|
|
)
|
|
|
|
if not is_valid_onnx_model:
|
|
continue
|
|
|
|
ort_session = create_onnxruntime_session(
|
|
onnx_model_file,
|
|
use_gpu,
|
|
provider,
|
|
enable_all_optimization=True,
|
|
num_threads=num_threads,
|
|
verbose=verbose,
|
|
)
|
|
if ort_session is None:
|
|
continue
|
|
|
|
ort_output_names = [node_arg.name for node_arg in ort_session.get_outputs()]
|
|
output_buffers = []
|
|
device = "cuda" if use_gpu else "cpu"
|
|
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
|
|
max_last_state_size = numpy.prod(
|
|
[
|
|
max(batch_sizes),
|
|
max(sequence_lengths),
|
|
max(vocab_size, config.hidden_size),
|
|
]
|
|
)
|
|
max_pooler_size = numpy.prod([max(batch_sizes), config.hidden_size])
|
|
for batch_size in batch_sizes:
|
|
if batch_size <= 0:
|
|
continue
|
|
for sequence_length in sequence_lengths:
|
|
if max_sequence_length is not None and sequence_length > max_sequence_length:
|
|
continue
|
|
|
|
input_value_type = numpy.int64 if "pt" in model_source else numpy.int32
|
|
ort_inputs = create_onnxruntime_input(
|
|
vocab_size,
|
|
batch_size,
|
|
sequence_length,
|
|
input_names,
|
|
config,
|
|
input_value_type,
|
|
)
|
|
result_template = {
|
|
"engine": "onnxruntime",
|
|
"version": onnxruntime.__version__,
|
|
"providers": provider,
|
|
"device": device,
|
|
"optimizer": optimizer_info,
|
|
"precision": precision,
|
|
"io_binding": not disable_ort_io_binding,
|
|
"model_name": model_name,
|
|
"inputs": num_inputs,
|
|
"threads": num_threads,
|
|
"batch_size": batch_size,
|
|
"sequence_length": sequence_length,
|
|
"custom_layer_num": config_modifier.get_layer_num(),
|
|
"datetime": str(datetime.now()),
|
|
}
|
|
|
|
logger.info(
|
|
"Run onnxruntime on {} with input shape {}".format(model_name, [batch_size, sequence_length])
|
|
)
|
|
|
|
if disable_ort_io_binding:
|
|
result = inference_ort(
|
|
ort_session,
|
|
ort_inputs,
|
|
result_template,
|
|
repeat_times,
|
|
batch_size,
|
|
warm_up_repeat,
|
|
)
|
|
else:
|
|
# Get output sizes from a dummy ort run
|
|
ort_outputs = ort_session.run(ort_output_names, ort_inputs)
|
|
output_buffer_max_sizes = [max_last_state_size]
|
|
for i in range(len(ort_outputs)):
|
|
if i == 2 and MODELS[model_name][3] == "gpt":
|
|
# past state output max size
|
|
output_buffer_max_sizes.append(max_pooler_size)
|
|
else:
|
|
output_buffer_max_sizes.append(max_last_state_size)
|
|
|
|
data_type = numpy.longlong if "pt" in model_source else numpy.intc
|
|
result = inference_ort_with_io_binding(
|
|
ort_session,
|
|
ort_inputs,
|
|
result_template,
|
|
repeat_times,
|
|
ort_output_names,
|
|
ort_outputs,
|
|
output_buffers,
|
|
output_buffer_max_sizes,
|
|
batch_size,
|
|
device,
|
|
data_type,
|
|
warm_up_repeat,
|
|
)
|
|
logger.info(result)
|
|
results.append(result)
|
|
|
|
return results
|
|
|
|
|
|
def run_pytorch(
|
|
use_gpu,
|
|
model_names,
|
|
model_class,
|
|
config_modifier,
|
|
precision,
|
|
num_threads,
|
|
batch_sizes,
|
|
sequence_lengths,
|
|
repeat_times,
|
|
torchscript,
|
|
torch2,
|
|
cache_dir,
|
|
verbose,
|
|
):
|
|
results = []
|
|
if use_gpu and not torch.cuda.is_available():
|
|
logger.error("Please install PyTorch with Cuda, and use a machine with GPU for testing gpu performance.")
|
|
return results
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
for model_name in model_names:
|
|
config = AutoConfig.from_pretrained(model_name, torchscript=torchscript, cache_dir=cache_dir)
|
|
config_modifier.modify(config)
|
|
model = load_pretrained_model(
|
|
model_name,
|
|
config=config,
|
|
cache_dir=cache_dir,
|
|
custom_model_class=model_class,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
|
|
|
max_input_size = (
|
|
tokenizer.max_model_input_sizes[model_name] if model_name in tokenizer.max_model_input_sizes else 1024
|
|
)
|
|
|
|
logger.debug(f"Model {model}")
|
|
logger.debug(f"Number of parameters {model.num_parameters()}")
|
|
|
|
if precision == Precision.FLOAT16:
|
|
model.half()
|
|
|
|
device = torch.device("cuda:0" if use_gpu else "cpu")
|
|
model.to(device)
|
|
|
|
if precision == Precision.INT8:
|
|
model = QuantizeHelper.quantize_torch_model(model)
|
|
|
|
for batch_size in batch_sizes:
|
|
if batch_size <= 0:
|
|
continue
|
|
|
|
for sequence_length in sequence_lengths:
|
|
if max_input_size is not None and sequence_length > max_input_size:
|
|
continue
|
|
|
|
logger.info("Run PyTorch on {} with input shape {}".format(model_name, [batch_size, sequence_length]))
|
|
input_ids = torch.randint(
|
|
low=0,
|
|
high=config.vocab_size - 1,
|
|
size=(batch_size, sequence_length),
|
|
dtype=torch.long,
|
|
device=device,
|
|
)
|
|
try:
|
|
inference = (
|
|
torch.jit.trace(model, input_ids) if torchscript else torch.compile(model) if torch2 else model
|
|
)
|
|
inference(input_ids)
|
|
|
|
runtimes = timeit.repeat(lambda: inference(input_ids), repeat=repeat_times, number=1)
|
|
|
|
result = {
|
|
"engine": "torchscript" if torchscript else "torch2" if torch2 else "torch",
|
|
"version": torch.__version__,
|
|
"providers": "NA",
|
|
"device": "cuda" if use_gpu else "cpu",
|
|
"optimizer": "",
|
|
"precision": precision,
|
|
"io_binding": "",
|
|
"model_name": model_name,
|
|
"inputs": 1,
|
|
"threads": num_threads,
|
|
"batch_size": batch_size,
|
|
"sequence_length": sequence_length,
|
|
"custom_layer_num": config_modifier.get_layer_num(),
|
|
"datetime": str(datetime.now()),
|
|
}
|
|
result.update(get_latency_result(runtimes, batch_size))
|
|
logger.info(result)
|
|
results.append(result)
|
|
except RuntimeError as e:
|
|
logger.exception(e)
|
|
torch.cuda.empty_cache()
|
|
|
|
return results
|
|
|
|
|
|
def run_with_tf_optimizations(do_eager_mode: bool, use_xla: bool):
|
|
from functools import wraps
|
|
|
|
import tensorflow as tf
|
|
|
|
def run_func(func):
|
|
@wraps(func)
|
|
def run_in_eager_mode(*args, **kwargs):
|
|
return func(*args, **kwargs)
|
|
|
|
@wraps(func)
|
|
@tf.function(experimental_compile=use_xla)
|
|
def run_in_graph_mode(*args, **kwargs):
|
|
return func(*args, **kwargs)
|
|
|
|
if do_eager_mode is True:
|
|
assert (
|
|
use_xla is False
|
|
), "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`."
|
|
return run_in_eager_mode
|
|
else:
|
|
return run_in_graph_mode
|
|
|
|
return run_func
|
|
|
|
|
|
def run_tensorflow(
|
|
use_gpu,
|
|
model_names,
|
|
model_class,
|
|
config_modifier,
|
|
precision,
|
|
num_threads,
|
|
batch_sizes,
|
|
sequence_lengths,
|
|
repeat_times,
|
|
cache_dir,
|
|
verbose,
|
|
):
|
|
results = []
|
|
|
|
import tensorflow as tf
|
|
|
|
tf.config.threading.set_intra_op_parallelism_threads(num_threads)
|
|
|
|
if not use_gpu:
|
|
tf.config.set_visible_devices([], "GPU")
|
|
|
|
if use_gpu and not tf.test.is_built_with_cuda():
|
|
logger.error("Please install Tensorflow-gpu, and use a machine with GPU for testing gpu performance.")
|
|
return results
|
|
|
|
if use_gpu: # Restrict TensorFlow to only use the first GPU
|
|
physical_devices = tf.config.list_physical_devices("GPU")
|
|
try:
|
|
tf.config.set_visible_devices(physical_devices[0], "GPU")
|
|
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
|
tf.distribute.OneDeviceStrategy(device="/gpu:0")
|
|
except RuntimeError as e:
|
|
logger.exception(e)
|
|
|
|
if precision == Precision.FLOAT16 or precision == Precision.INT8:
|
|
raise NotImplementedError("Mixed precision is currently not supported.")
|
|
|
|
for model_name in model_names:
|
|
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
|
|
config_modifier.modify(config)
|
|
|
|
model = load_pretrained_model(
|
|
model_name,
|
|
config=config,
|
|
cache_dir=cache_dir,
|
|
custom_model_class=model_class,
|
|
is_tf_model=True,
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
|
|
|
max_input_size = (
|
|
tokenizer.max_model_input_sizes[model_name] if model_name in tokenizer.max_model_input_sizes else 1024
|
|
)
|
|
|
|
for batch_size in batch_sizes:
|
|
if batch_size <= 0:
|
|
continue
|
|
|
|
for sequence_length in sequence_lengths:
|
|
if max_input_size is not None and sequence_length > max_input_size:
|
|
continue
|
|
|
|
logger.info(
|
|
"Run Tensorflow on {} with input shape {}".format(model_name, [batch_size, sequence_length])
|
|
)
|
|
|
|
import random
|
|
|
|
rng = random.Random()
|
|
values = [rng.randint(0, config.vocab_size - 1) for i in range(batch_size * sequence_length)]
|
|
input_ids = tf.constant(values, shape=(batch_size, sequence_length), dtype=tf.int32)
|
|
|
|
try:
|
|
# Disable both for better inference perf
|
|
@run_with_tf_optimizations(do_eager_mode=False, use_xla=False)
|
|
def encoder_forward():
|
|
return model(input_ids, training=False)
|
|
|
|
@run_with_tf_optimizations(do_eager_mode=False, use_xla=False)
|
|
def encoder_decoder_forward():
|
|
return model(input_ids, decoder_input_ids=input_ids, training=False)
|
|
|
|
@run_with_tf_optimizations(do_eager_mode=False, use_xla=False)
|
|
def lxmert_forward():
|
|
feats = tf.random.normal([1, 1, config.visual_feat_dim])
|
|
pos = tf.random.normal([1, 1, config.visual_pos_dim])
|
|
return model(
|
|
input_ids,
|
|
visual_feats=feats,
|
|
visual_pos=pos,
|
|
training=False,
|
|
)
|
|
|
|
inference = encoder_forward
|
|
if config.is_encoder_decoder:
|
|
inference = encoder_decoder_forward
|
|
elif isinstance(config, LxmertConfig):
|
|
inference = lxmert_forward
|
|
|
|
inference()
|
|
|
|
runtimes = timeit.repeat(lambda: inference(), repeat=repeat_times, number=1)
|
|
|
|
result = {
|
|
"engine": "tensorflow",
|
|
"version": tf.__version__,
|
|
"providers": "NA",
|
|
"device": "cuda" if use_gpu else "cpu",
|
|
"optimizer": "",
|
|
"precision": precision,
|
|
"io_binding": "",
|
|
"model_name": model_name,
|
|
"inputs": 1,
|
|
"threads": num_threads,
|
|
"batch_size": batch_size,
|
|
"sequence_length": sequence_length,
|
|
"custom_layer_num": config_modifier.get_layer_num(),
|
|
"datetime": str(datetime.now()),
|
|
}
|
|
result.update(get_latency_result(runtimes, batch_size))
|
|
logger.info(result)
|
|
results.append(result)
|
|
except RuntimeError as e:
|
|
logger.exception(e)
|
|
from numba import cuda
|
|
|
|
device = cuda.get_current_device()
|
|
device.reset()
|
|
|
|
return results
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"-m",
|
|
"--models",
|
|
required=False,
|
|
nargs="+",
|
|
type=str,
|
|
default=["bert-base-cased", "roberta-base", "gpt2"],
|
|
choices=list(MODELS.keys()),
|
|
help="Pre-trained models in the list: " + ", ".join(MODELS.keys()),
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model_source",
|
|
required=False,
|
|
nargs=1,
|
|
type=str,
|
|
default="pt",
|
|
choices=["pt", "tf"],
|
|
help="Export onnx from pt or tf",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model_class",
|
|
required=False,
|
|
type=str,
|
|
default=None,
|
|
choices=list(MODEL_CLASSES),
|
|
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES),
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-e",
|
|
"--engines",
|
|
required=False,
|
|
nargs="+",
|
|
type=str,
|
|
default=["onnxruntime"],
|
|
choices=["onnxruntime", "torch", "torch2", "torchscript", "tensorflow"],
|
|
help="Engines to benchmark",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-c",
|
|
"--cache_dir",
|
|
required=False,
|
|
type=str,
|
|
default=os.path.join(".", "cache_models"),
|
|
help="Directory to cache pre-trained models",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--onnx_dir",
|
|
required=False,
|
|
type=str,
|
|
default=os.path.join(".", "onnx_models"),
|
|
help="Directory to store onnx models",
|
|
)
|
|
|
|
parser.add_argument("-g", "--use_gpu", required=False, action="store_true", help="Run on gpu device")
|
|
|
|
parser.add_argument(
|
|
"--provider",
|
|
required=False,
|
|
type=str,
|
|
default=None,
|
|
help="Execution provider to use",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-p",
|
|
"--precision",
|
|
type=Precision,
|
|
default=Precision.FLOAT32,
|
|
choices=list(Precision),
|
|
help="Precision of model to run. fp32 for full precision, fp16 for half precision, and int8 for quantization",
|
|
)
|
|
|
|
parser.add_argument("--verbose", required=False, action="store_true", help="Print more information")
|
|
|
|
parser.add_argument(
|
|
"--overwrite",
|
|
required=False,
|
|
action="store_true",
|
|
help="Overwrite existing models",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-o",
|
|
"--optimizer_info",
|
|
type=OptimizerInfo,
|
|
default=OptimizerInfo.BYSCRIPT,
|
|
choices=list(OptimizerInfo),
|
|
help="Optimizer info: Use optimizer.py to optimize onnx model as default. Can also choose from by_ort and no_opt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-v",
|
|
"--validate_onnx",
|
|
required=False,
|
|
action="store_true",
|
|
help="Validate ONNX model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-f",
|
|
"--fusion_csv",
|
|
required=False,
|
|
default=None,
|
|
help="CSV file for saving summary results of graph optimization.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-d",
|
|
"--detail_csv",
|
|
required=False,
|
|
default=None,
|
|
help="CSV file for saving detail results.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-r",
|
|
"--result_csv",
|
|
required=False,
|
|
default=None,
|
|
help="CSV file for saving summary results.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-i",
|
|
"--input_counts",
|
|
required=False,
|
|
nargs="+",
|
|
default=[1],
|
|
type=int,
|
|
choices=[1, 2, 3],
|
|
help="Number of ONNX model inputs. Please use 1 for fair comparison with Torch or TorchScript.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-t",
|
|
"--test_times",
|
|
required=False,
|
|
default=100,
|
|
type=int,
|
|
help="Number of repeat times to get average inference latency.",
|
|
)
|
|
|
|
parser.add_argument("-b", "--batch_sizes", nargs="+", type=int, default=[1])
|
|
|
|
parser.add_argument(
|
|
"-s",
|
|
"--sequence_lengths",
|
|
nargs="+",
|
|
type=int,
|
|
default=[4, 8, 16, 32, 64, 128, 256],
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--disable_ort_io_binding",
|
|
required=False,
|
|
action="store_true",
|
|
help="Disable running ONNX Runtime with binded inputs and outputs. ",
|
|
)
|
|
parser.set_defaults(disable_ort_io_binding=False)
|
|
|
|
parser.add_argument(
|
|
"-n",
|
|
"--num_threads",
|
|
required=False,
|
|
nargs="+",
|
|
type=int,
|
|
default=[0],
|
|
help="Threads to use",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--force_num_layers",
|
|
required=False,
|
|
type=int,
|
|
default=None,
|
|
help="Manually set the model's layer number",
|
|
)
|
|
|
|
FusionOptions.add_arguments(parser)
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_arguments()
|
|
|
|
setup_logger(args.verbose)
|
|
|
|
if args.precision == Precision.FLOAT16 and not args.use_gpu:
|
|
logger.error("fp16 is for GPU only")
|
|
return
|
|
|
|
if args.precision == Precision.INT8 and args.use_gpu:
|
|
logger.error("int8 is for CPU only")
|
|
return
|
|
|
|
args.num_threads = sorted(set(cpu_count if x <= 0 else x for x in args.num_threads))
|
|
|
|
logger.info(f"Arguments: {args}")
|
|
|
|
if not os.path.exists(args.cache_dir):
|
|
try:
|
|
os.mkdir(args.cache_dir)
|
|
except OSError:
|
|
logger.error("Creation of the directory %s failed" % args.cache_dir)
|
|
|
|
enable_torch = "torch" in args.engines
|
|
enable_torch2 = "torch2" in args.engines
|
|
enable_torchscript = "torchscript" in args.engines
|
|
enable_onnxruntime = "onnxruntime" in args.engines
|
|
enable_tensorflow = "tensorflow" in args.engines
|
|
|
|
if enable_torch2 and version.parse(torch.__version__) < version.parse("2.0.0"):
|
|
logger.error(f"PyTorch version must be >=2.0.0 and you are using {torch.__version__}")
|
|
return
|
|
|
|
config_modifier = ConfigModifier(args.force_num_layers)
|
|
|
|
results = []
|
|
|
|
for num_threads in args.num_threads:
|
|
torch.set_num_threads(num_threads)
|
|
logger.debug(torch.__config__.parallel_info())
|
|
if enable_torch or enable_torch2 or enable_torchscript:
|
|
if args.input_counts != [1]:
|
|
logger.warning("--input_counts is not implemented for torch or torchscript engine.")
|
|
|
|
if enable_torchscript:
|
|
results += run_pytorch(
|
|
args.use_gpu,
|
|
args.models,
|
|
args.model_class,
|
|
config_modifier,
|
|
args.precision,
|
|
num_threads,
|
|
args.batch_sizes,
|
|
args.sequence_lengths,
|
|
args.test_times,
|
|
True,
|
|
False,
|
|
args.cache_dir,
|
|
args.verbose,
|
|
)
|
|
|
|
if enable_torch:
|
|
results += run_pytorch(
|
|
args.use_gpu,
|
|
args.models,
|
|
args.model_class,
|
|
config_modifier,
|
|
args.precision,
|
|
num_threads,
|
|
args.batch_sizes,
|
|
args.sequence_lengths,
|
|
args.test_times,
|
|
False,
|
|
False,
|
|
args.cache_dir,
|
|
args.verbose,
|
|
)
|
|
|
|
if enable_torch2:
|
|
results += run_pytorch(
|
|
args.use_gpu,
|
|
args.models,
|
|
args.model_class,
|
|
config_modifier,
|
|
args.precision,
|
|
num_threads,
|
|
args.batch_sizes,
|
|
args.sequence_lengths,
|
|
args.test_times,
|
|
False,
|
|
True,
|
|
args.cache_dir,
|
|
args.verbose,
|
|
)
|
|
|
|
if enable_tensorflow:
|
|
results += run_tensorflow(
|
|
args.use_gpu,
|
|
args.models,
|
|
args.model_class,
|
|
config_modifier,
|
|
args.precision,
|
|
num_threads,
|
|
args.batch_sizes,
|
|
args.sequence_lengths,
|
|
args.test_times,
|
|
args.cache_dir,
|
|
args.verbose,
|
|
)
|
|
|
|
model_fusion_statistics = {}
|
|
if enable_onnxruntime:
|
|
try:
|
|
use_raw_attention_mask = not args.use_mask_index
|
|
results += run_onnxruntime(
|
|
args.use_gpu,
|
|
args.provider,
|
|
args.models,
|
|
args.model_class,
|
|
config_modifier,
|
|
args.precision,
|
|
num_threads,
|
|
args.batch_sizes,
|
|
args.sequence_lengths,
|
|
args.test_times,
|
|
args.input_counts,
|
|
args.optimizer_info,
|
|
args.validate_onnx,
|
|
args.cache_dir,
|
|
args.onnx_dir,
|
|
args.verbose,
|
|
args.overwrite,
|
|
args.disable_ort_io_binding,
|
|
use_raw_attention_mask,
|
|
model_fusion_statistics,
|
|
args.model_source,
|
|
args,
|
|
)
|
|
except:
|
|
logger.error(f"Exception", exc_info=True)
|
|
|
|
time_stamp = datetime.now().strftime("%Y%m%d-%H%M%S")
|
|
if model_fusion_statistics:
|
|
csv_filename = args.fusion_csv or f"benchmark_fusion_{time_stamp}.csv"
|
|
output_fusion_statistics(model_fusion_statistics, csv_filename)
|
|
|
|
if len(results) == 0:
|
|
if args.batch_sizes != [0]:
|
|
logger.warning("No any result avaiable.")
|
|
return
|
|
|
|
csv_filename = args.detail_csv or f"benchmark_detail_{time_stamp}.csv"
|
|
output_details(results, csv_filename)
|
|
|
|
csv_filename = args.result_csv or f"benchmark_summary_{time_stamp}.csv"
|
|
output_summary(results, csv_filename, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|