m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

546 lines
17 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
# This tool measures the inference performance of onnxruntime or onnxruntime-gpu python package on Bert model.
# The input model shall have exactly three inputs. The model is either fully optimized (with EmbedLayerNormalization node),
# or with reasonable input names (one input name has 'mask' substring, another has 'token' or 'segment' substring).
# See get_bert_inputs function in bert_test_data.py for more information.
# Example command to run test on batch_size 1 and 2 for a model on GPU:
# python bert_perf_test.py --model bert.onnx --batch_size 1 2 --sequence_length 128 --use_gpu --samples 1000 --test_times 1
import argparse
import csv
import multiprocessing
import os
import random
import statistics
import timeit
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
import numpy as np
import psutil
import torch
from bert_test_data import generate_test_data, get_bert_inputs
@dataclass
class TestSetting:
batch_size: int
sequence_length: int
test_cases: int
test_times: int
use_gpu: bool
use_io_binding: bool
provider: str
intra_op_num_threads: int
seed: int
verbose: bool
log_severity: int
@dataclass
class ModelSetting:
model_path: str
input_ids_name: str
segment_ids_name: str
input_mask_name: str
opt_level: int
def create_session(model_path, use_gpu, provider, intra_op_num_threads, graph_optimization_level=None, log_severity=2):
import onnxruntime
onnxruntime.set_default_logger_severity(log_severity)
if use_gpu and ("CUDAExecutionProvider" not in onnxruntime.get_available_providers()):
print(
"Warning: Please install onnxruntime-gpu package instead of onnxruntime, and use a machine with GPU for testing gpu performance."
)
if use_gpu:
if provider == "dml":
execution_providers = ["DmlExecutionProvider", "CPUExecutionProvider"]
elif provider == "rocm":
execution_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
elif provider == "migraphx":
execution_providers = [
"MIGraphXExecutionProvider",
"ROCMExecutionProvider",
"CPUExecutionProvider",
]
elif provider == "cuda":
execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
elif provider == "tensorrt":
execution_providers = [
"TensorrtExecutionProvider",
"CUDAExecutionProvider",
"CPUExecutionProvider",
]
else:
execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
execution_providers = ["CPUExecutionProvider"]
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = log_severity
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
if graph_optimization_level is None:
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
elif graph_optimization_level == 0:
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
elif graph_optimization_level == 1:
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC
elif graph_optimization_level == 2:
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
elif graph_optimization_level == 99:
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
else:
sess_options.graph_optimization_level = graph_optimization_level
if intra_op_num_threads is not None:
sess_options.intra_op_num_threads = intra_op_num_threads
session = onnxruntime.InferenceSession(model_path, sess_options, providers=execution_providers)
if use_gpu:
if provider == "dml":
assert "DmlExecutionProvider" in session.get_providers()
elif provider == "rocm":
assert "ROCMExecutionProvider" in session.get_providers()
elif provider == "migraphx":
assert "MIGraphXExecutionProvider" in session.get_providers()
assert "ROCMExecutionProvider" in session.get_providers()
elif provider == "cuda":
assert "CUDAExecutionProvider" in session.get_providers()
elif provider == "tensorrt":
assert "TensorrtExecutionProvider" in session.get_providers()
assert "CUDAExecutionProvider" in session.get_providers()
else:
assert "CUDAExecutionProvider" in session.get_providers()
else:
assert "CPUExecutionProvider" in session.get_providers()
return session
def numpy_type(torch_type):
type_map = {
torch.float32: np.float32,
torch.float16: np.float16,
torch.int32: np.int32,
torch.int64: np.longlong,
}
return type_map[torch_type]
def create_input_output_tensors(inputs, outputs, device):
input_tensors = {name: torch.from_numpy(array).to(device) for name, array in inputs.items()}
output_tensors = {name: torch.from_numpy(array).to(device) for name, array in outputs.items()}
return input_tensors, output_tensors
def create_io_binding(sess, input_tensors, output_tensors):
io_binding = sess.io_binding()
for name, tensor in input_tensors.items():
io_binding.bind_input(
name,
tensor.device.type,
0,
numpy_type(tensor.dtype),
tensor.shape,
tensor.data_ptr(),
)
for name, tensor in output_tensors.items():
io_binding.bind_output(
name,
tensor.device.type,
0,
numpy_type(tensor.dtype),
tensor.shape,
tensor.data_ptr(),
)
return io_binding
def onnxruntime_inference_with_io_binding(session, all_inputs, output_names, test_setting):
results = []
latency_list = []
device = "cuda" if test_setting.use_gpu else "cpu"
for test_case_id, inputs in enumerate(all_inputs):
result = session.run(output_names, inputs)
results.append(result)
outputs = {}
for i in range(len(output_names)):
outputs[output_names[i]] = result[i]
input_tensors, output_tensors = create_input_output_tensors(inputs, outputs, device)
io_binding = create_io_binding(session, input_tensors, output_tensors)
# warm up once
session.run_with_iobinding(io_binding)
start_time = timeit.default_timer()
session.run_with_iobinding(io_binding)
latency = timeit.default_timer() - start_time
latency_list.append(latency)
return results, latency_list
def onnxruntime_inference(session, all_inputs, output_names):
if len(all_inputs) > 0:
# Use a random input as warm up.
session.run(output_names, random.choice(all_inputs))
results = []
latency_list = []
for test_case_id, inputs in enumerate(all_inputs):
start_time = timeit.default_timer()
result = session.run(output_names, inputs)
latency = timeit.default_timer() - start_time
results.append(result)
latency_list.append(latency)
return results, latency_list
def to_string(model_path, session, test_setting):
sess_options = session.get_session_options()
option = "model={},".format(os.path.basename(model_path))
option += "graph_optimization_level={},intra_op_num_threads={},".format(
sess_options.graph_optimization_level, sess_options.intra_op_num_threads
).replace("GraphOptimizationLevel.ORT_", "")
option += f"batch_size={test_setting.batch_size},sequence_length={test_setting.sequence_length},test_cases={test_setting.test_cases},test_times={test_setting.test_times},use_gpu={test_setting.use_gpu}"
return option
def run_one_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads):
session = create_session(
model_setting.model_path,
test_setting.use_gpu,
test_setting.provider,
intra_op_num_threads,
model_setting.opt_level,
log_severity=test_setting.log_severity,
)
output_names = [output.name for output in session.get_outputs()]
key = to_string(model_setting.model_path, session, test_setting)
if key in perf_results:
print("skip duplicated test:", key)
return
print("Running test:", key)
all_latency_list = []
if test_setting.use_io_binding:
for i in range(test_setting.test_times):
results, latency_list = onnxruntime_inference_with_io_binding(
session, all_inputs, output_names, test_setting
)
all_latency_list.extend(latency_list)
else:
for i in range(test_setting.test_times):
results, latency_list = onnxruntime_inference(session, all_inputs, output_names)
all_latency_list.extend(latency_list)
# latency in miliseconds
latency_ms = np.array(all_latency_list) * 1000
average_latency = statistics.mean(latency_ms)
latency_50 = np.percentile(latency_ms, 50)
latency_75 = np.percentile(latency_ms, 75)
latency_90 = np.percentile(latency_ms, 90)
latency_95 = np.percentile(latency_ms, 95)
latency_99 = np.percentile(latency_ms, 99)
throughput = test_setting.batch_size * (1000.0 / average_latency)
perf_results[key] = (
average_latency,
latency_50,
latency_75,
latency_90,
latency_95,
latency_99,
throughput,
)
print(
"Average latency = {} ms, Throughput = {} QPS".format(format(average_latency, ".2f"), format(throughput, ".2f"))
)
def launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads):
process = multiprocessing.Process(
target=run_one_test,
args=(
model_setting,
test_setting,
perf_results,
all_inputs,
intra_op_num_threads,
),
)
process.start()
process.join()
def run_perf_tests(model_setting, test_setting, perf_results, all_inputs):
if test_setting.intra_op_num_threads is not None:
launch_test(
model_setting,
test_setting,
perf_results,
all_inputs,
test_setting.intra_op_num_threads,
)
return
cpu_count = psutil.cpu_count(logical=False)
logical_cores = psutil.cpu_count(logical=True)
candidate_threads = list(set([logical_cores, cpu_count]))
for i in range(1, min(16, logical_cores)):
if i not in candidate_threads:
candidate_threads.append(i)
candidate_threads.sort(reverse=True)
for intra_op_num_threads in candidate_threads:
launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads)
def run_performance(model_setting, test_setting, perf_results):
input_ids, segment_ids, input_mask = get_bert_inputs(
model_setting.model_path,
model_setting.input_ids_name,
model_setting.segment_ids_name,
model_setting.input_mask_name,
)
# Do not generate random mask for performance test.
print(
f"Generating {test_setting.test_cases} samples for batch_size={test_setting.batch_size} sequence_length={test_setting.sequence_length}"
)
all_inputs = generate_test_data(
test_setting.batch_size,
test_setting.sequence_length,
test_setting.test_cases,
test_setting.seed,
test_setting.verbose,
input_ids,
segment_ids,
input_mask,
random_mask_length=False,
)
run_perf_tests(model_setting, test_setting, perf_results, all_inputs)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, type=str, help="bert onnx model path")
parser.add_argument(
"-b",
"--batch_size",
required=True,
type=int,
nargs="+",
help="batch size of input. Allow one or multiple values in the range of [1, 128].",
)
parser.add_argument(
"-s",
"--sequence_length",
required=True,
type=int,
help="maximum sequence length of input",
)
parser.add_argument(
"--samples",
required=False,
type=int,
default=10,
help="number of samples to be generated",
)
parser.add_argument(
"-t",
"--test_times",
required=False,
type=int,
default=0,
help="number of times to run per sample. By default, the value is 1000 / samples",
)
parser.add_argument(
"--opt_level",
required=False,
type=int,
choices=[0, 1, 2, 99],
default=99,
help="onnxruntime optimization level: 0 - disable all, 1 - basic, 2 - extended, 99 - enable all.",
)
parser.add_argument(
"--seed",
required=False,
type=int,
default=3,
help="random seed. Use the same seed to make sure test data is same in multiple tests.",
)
parser.add_argument(
"--verbose",
required=False,
action="store_true",
help="print verbose information",
)
parser.set_defaults(verbose=False)
parser.add_argument(
"--log_severity",
required=False,
type=int,
default=2,
choices=[0, 1, 2, 3, 4],
help="0:Verbose, 1:Info, 2:Warning, 3:Error, 4:Fatal",
)
parser.add_argument("--use_gpu", required=False, action="store_true", help="use GPU")
parser.set_defaults(use_gpu=False)
parser.add_argument("--use_io_binding", required=False, action="store_true", help="use io_binding")
parser.set_defaults(use_io_binding=False)
parser.add_argument(
"--provider",
required=False,
type=str,
default=None,
help="Execution provider to use",
)
parser.add_argument(
"-n",
"--intra_op_num_threads",
required=False,
type=int,
default=None,
help=">=0, set intra_op_num_threads",
)
parser.add_argument(
"--input_ids_name",
required=False,
type=str,
default=None,
help="input name for input ids",
)
parser.add_argument(
"--segment_ids_name",
required=False,
type=str,
default=None,
help="input name for segment ids",
)
parser.add_argument(
"--input_mask_name",
required=False,
type=str,
default=None,
help="input name for attention mask",
)
args = parser.parse_args()
return args
def main():
args = parse_arguments()
if args.test_times == 0:
args.test_times = max(1, int(1000 / args.samples))
manager = multiprocessing.Manager()
perf_results = manager.dict()
batch_size_set = set(args.batch_size)
if not min(batch_size_set) >= 1 and max(batch_size_set) <= 128:
raise Exception("batch_size not in range [1, 128]")
model_setting = ModelSetting(
args.model,
args.input_ids_name,
args.segment_ids_name,
args.input_mask_name,
args.opt_level,
)
for batch_size in batch_size_set:
test_setting = TestSetting(
batch_size,
args.sequence_length,
args.samples,
args.test_times,
args.use_gpu,
args.use_io_binding,
args.provider,
args.intra_op_num_threads,
args.seed,
args.verbose,
args.log_severity,
)
print("test setting", test_setting)
run_performance(model_setting, test_setting, perf_results)
# Sort the results so that the first one has smallest latency.
sorted_results = sorted(perf_results.items(), reverse=False, key=lambda x: x[1])
summary_file = os.path.join(
Path(args.model).parent,
"perf_results_{}_B{}_S{}_{}.txt".format(
"GPU" if args.use_gpu else "CPU",
"-".join([str(x) for x in sorted(list(batch_size_set))]),
args.sequence_length,
datetime.now().strftime("%Y%m%d-%H%M%S"),
),
)
with open(summary_file, "w+", newline="") as tsv_file:
tsv_writer = csv.writer(tsv_file, delimiter="\t", lineterminator="\n")
headers = None
for (key, perf_result) in sorted_results:
params = key.split(",")
if headers is None:
headers = [
"Latency(ms)",
"Latency_P50",
"Latency_P75",
"Latency_P90",
"Latency_P95",
"Latency_P99",
"Throughput(QPS)",
]
headers.extend([x.split("=")[0] for x in params])
tsv_writer.writerow(headers)
values = [format(x, ".2f") for x in perf_result]
values.extend([x.split("=")[1] for x in params])
tsv_writer.writerow(values)
print("Test summary is saved to", summary_file)
if __name__ == "__main__":
# work around for AnaConda Jupyter. See https://stackoverflow.com/questions/45720153/python-multiprocessing-error-attributeerror-module-main-has-no-attribute
__spec__ = None
main()