m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

545 lines
18 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
# It is a tool to generate test data for a bert model.
# The test data can be used by onnxruntime_perf_test tool to evaluate the inference latency.
import argparse
import os
import random
from pathlib import Path
from typing import Dict, Optional, Tuple
import numpy as np
from onnx import ModelProto, TensorProto, numpy_helper
from onnx_model import OnnxModel
def fake_input_ids_data(
input_ids: TensorProto, batch_size: int, sequence_length: int, dictionary_size: int
) -> np.ndarray:
"""Create input tensor based on the graph input of input_ids
Args:
input_ids (TensorProto): graph input of the input_ids input tensor
batch_size (int): batch size
sequence_length (int): sequence length
dictionary_size (int): vocabulary size of dictionary
Returns:
np.ndarray: the input tensor created
"""
assert input_ids.type.tensor_type.elem_type in [
TensorProto.FLOAT,
TensorProto.INT32,
TensorProto.INT64,
]
data = np.random.randint(dictionary_size, size=(batch_size, sequence_length), dtype=np.int32)
if input_ids.type.tensor_type.elem_type == TensorProto.FLOAT:
data = np.float32(data)
elif input_ids.type.tensor_type.elem_type == TensorProto.INT64:
data = np.int64(data)
return data
def fake_segment_ids_data(segment_ids: TensorProto, batch_size: int, sequence_length: int) -> np.ndarray:
"""Create input tensor based on the graph input of segment_ids
Args:
segment_ids (TensorProto): graph input of the token_type_ids input tensor
batch_size (int): batch size
sequence_length (int): sequence length
Returns:
np.ndarray: the input tensor created
"""
assert segment_ids.type.tensor_type.elem_type in [
TensorProto.FLOAT,
TensorProto.INT32,
TensorProto.INT64,
]
data = np.zeros((batch_size, sequence_length), dtype=np.int32)
if segment_ids.type.tensor_type.elem_type == TensorProto.FLOAT:
data = np.float32(data)
elif segment_ids.type.tensor_type.elem_type == TensorProto.INT64:
data = np.int64(data)
return data
def fake_input_mask_data(
input_mask: TensorProto,
batch_size: int,
sequence_length: int,
random_mask_length: bool,
) -> np.ndarray:
"""Create input tensor based on the graph input of segment_ids.
Args:
input_mask (TensorProto): graph input of the attention mask input tensor
batch_size (int): batch size
sequence_length (int): sequence length
random_mask_length (bool): whether mask according to random padding length
Returns:
np.ndarray: the input tensor created
"""
assert input_mask.type.tensor_type.elem_type in [
TensorProto.FLOAT,
TensorProto.INT32,
TensorProto.INT64,
]
if random_mask_length:
actual_seq_len = random.randint(int(sequence_length * 2 / 3), sequence_length)
data = np.zeros((batch_size, sequence_length), dtype=np.int32)
temp = np.ones((batch_size, actual_seq_len), dtype=np.int32)
data[: temp.shape[0], : temp.shape[1]] = temp
else:
data = np.ones((batch_size, sequence_length), dtype=np.int32)
if input_mask.type.tensor_type.elem_type == TensorProto.FLOAT:
data = np.float32(data)
elif input_mask.type.tensor_type.elem_type == TensorProto.INT64:
data = np.int64(data)
return data
def output_test_data(directory: str, inputs: Dict[str, np.ndarray]):
"""Output input tensors of test data to a directory
Args:
directory (str): path of a directory
inputs (Dict[str, np.ndarray]): map from input name to value
"""
if not os.path.exists(directory):
try:
os.mkdir(directory)
except OSError:
print("Creation of the directory %s failed" % directory)
else:
print("Successfully created the directory %s " % directory)
else:
print("Warning: directory %s existed. Files will be overwritten." % directory)
index = 0
for name, data in inputs.items():
tensor = numpy_helper.from_array(data, name)
with open(os.path.join(directory, "input_{}.pb".format(index)), "wb") as file:
file.write(tensor.SerializeToString())
index += 1
def fake_test_data(
batch_size: int,
sequence_length: int,
test_cases: int,
dictionary_size: int,
verbose: bool,
random_seed: int,
input_ids: TensorProto,
segment_ids: TensorProto,
input_mask: TensorProto,
random_mask_length: bool,
):
"""Create given number of input data for testing
Args:
batch_size (int): batch size
sequence_length (int): sequence length
test_cases (int): number of test cases
dictionary_size (int): vocabulary size of dictionary for input_ids
verbose (bool): print more information or not
random_seed (int): random seed
input_ids (TensorProto): graph input of input IDs
segment_ids (TensorProto): graph input of token type IDs
input_mask (TensorProto): graph input of attention mask
random_mask_length (bool): whether mask random number of words at the end
Returns:
List[Dict[str,numpy.ndarray]]: list of test cases, where each test case is a dictionary
with input name as key and a tensor as value
"""
assert input_ids is not None
np.random.seed(random_seed)
random.seed(random_seed)
all_inputs = []
for test_case in range(test_cases):
input_1 = fake_input_ids_data(input_ids, batch_size, sequence_length, dictionary_size)
inputs = {input_ids.name: input_1}
if segment_ids:
inputs[segment_ids.name] = fake_segment_ids_data(segment_ids, batch_size, sequence_length)
if input_mask:
inputs[input_mask.name] = fake_input_mask_data(input_mask, batch_size, sequence_length, random_mask_length)
if verbose and len(all_inputs) == 0:
print("Example inputs", inputs)
all_inputs.append(inputs)
return all_inputs
def generate_test_data(
batch_size: int,
sequence_length: int,
test_cases: int,
seed: int,
verbose: bool,
input_ids: TensorProto,
segment_ids: TensorProto,
input_mask: TensorProto,
random_mask_length: bool,
):
"""Create given number of input data for testing
Args:
batch_size (int): batch size
sequence_length (int): sequence length
test_cases (int): number of test cases
seed (int): random seed
verbose (bool): print more information or not
input_ids (TensorProto): graph input of input IDs
segment_ids (TensorProto): graph input of token type IDs
input_mask (TensorProto): graph input of attention mask
random_mask_length (bool): whether mask random number of words at the end
Returns:
List[Dict[str,numpy.ndarray]]: list of test cases, where each test case is a dictionary
with input name as key and a tensor as value
"""
dictionary_size = 10000
all_inputs = fake_test_data(
batch_size,
sequence_length,
test_cases,
dictionary_size,
verbose,
seed,
input_ids,
segment_ids,
input_mask,
random_mask_length,
)
if len(all_inputs) != test_cases:
print("Failed to create test data for test.")
return all_inputs
def get_graph_input_from_embed_node(onnx_model, embed_node, input_index):
if input_index >= len(embed_node.input):
return None
input = embed_node.input[input_index]
graph_input = onnx_model.find_graph_input(input)
if graph_input is None:
parent_node = onnx_model.get_parent(embed_node, input_index)
if parent_node is not None and parent_node.op_type == "Cast":
graph_input = onnx_model.find_graph_input(parent_node.input[0])
return graph_input
def find_bert_inputs(
onnx_model: OnnxModel,
input_ids_name: Optional[str] = None,
segment_ids_name: Optional[str] = None,
input_mask_name: Optional[str] = None,
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray]]:
"""Find graph inputs for BERT model.
First, we will deduce inputs from EmbedLayerNormalization node.
If not found, we will guess the meaning of graph inputs based on naming.
Args:
onnx_model (OnnxModel): onnx model object
input_ids_name (str, optional): Name of graph input for input IDs. Defaults to None.
segment_ids_name (str, optional): Name of graph input for segment IDs. Defaults to None.
input_mask_name (str, optional): Name of graph input for attention mask. Defaults to None.
Raises:
ValueError: Graph does not have input named of input_ids_name or segment_ids_name or input_mask_name
ValueError: Expected graph input number does not match with specified input_ids_name, segment_ids_name
and input_mask_name
Returns:
Tuple[Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray]]: input tensors of input_ids,
segment_ids and input_mask
"""
graph_inputs = onnx_model.get_graph_inputs_excluding_initializers()
if input_ids_name is not None:
input_ids = onnx_model.find_graph_input(input_ids_name)
if input_ids is None:
raise ValueError(f"Graph does not have input named {input_ids_name}")
segment_ids = None
if segment_ids_name:
segment_ids = onnx_model.find_graph_input(segment_ids_name)
if segment_ids is None:
raise ValueError(f"Graph does not have input named {segment_ids_name}")
input_mask = None
if input_mask_name:
input_mask = onnx_model.find_graph_input(input_mask_name)
if input_mask is None:
raise ValueError(f"Graph does not have input named {input_mask_name}")
expected_inputs = 1 + (1 if segment_ids else 0) + (1 if input_mask else 0)
if len(graph_inputs) != expected_inputs:
raise ValueError(f"Expect the graph to have {expected_inputs} inputs. Got {len(graph_inputs)}")
return input_ids, segment_ids, input_mask
if len(graph_inputs) != 3:
raise ValueError("Expect the graph to have 3 inputs. Got {}".format(len(graph_inputs)))
embed_nodes = onnx_model.get_nodes_by_op_type("EmbedLayerNormalization")
if len(embed_nodes) == 1:
embed_node = embed_nodes[0]
input_ids = get_graph_input_from_embed_node(onnx_model, embed_node, 0)
segment_ids = get_graph_input_from_embed_node(onnx_model, embed_node, 1)
input_mask = get_graph_input_from_embed_node(onnx_model, embed_node, 7)
if input_mask is None:
for input in graph_inputs:
input_name_lower = input.name.lower()
if "mask" in input_name_lower:
input_mask = input
if input_mask is None:
raise ValueError(f"Failed to find attention mask input")
return input_ids, segment_ids, input_mask
# Try guess the inputs based on naming.
input_ids = None
segment_ids = None
input_mask = None
for input in graph_inputs:
input_name_lower = input.name.lower()
if "mask" in input_name_lower: # matches input with name like "attention_mask" or "input_mask"
input_mask = input
elif (
"token" in input_name_lower or "segment" in input_name_lower
): # matches input with name like "segment_ids" or "token_type_ids"
segment_ids = input
else:
input_ids = input
if input_ids and segment_ids and input_mask:
return input_ids, segment_ids, input_mask
raise ValueError("Fail to assign 3 inputs. You might try rename the graph inputs.")
def get_bert_inputs(
onnx_file: str,
input_ids_name: Optional[str] = None,
segment_ids_name: Optional[str] = None,
input_mask_name: Optional[str] = None,
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray]]:
"""Find graph inputs for BERT model.
First, we will deduce inputs from EmbedLayerNormalization node.
If not found, we will guess the meaning of graph inputs based on naming.
Args:
onnx_file (str): onnx model path
input_ids_name (str, optional): Name of graph input for input IDs. Defaults to None.
segment_ids_name (str, optional): Name of graph input for segment IDs. Defaults to None.
input_mask_name (str, optional): Name of graph input for attention mask. Defaults to None.
Returns:
Tuple[Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray]]: input tensors of input_ids,
segment_ids and input_mask
"""
model = ModelProto()
with open(onnx_file, "rb") as file:
model.ParseFromString(file.read())
onnx_model = OnnxModel(model)
return find_bert_inputs(onnx_model, input_ids_name, segment_ids_name, input_mask_name)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, type=str, help="bert onnx model path.")
parser.add_argument(
"--output_dir",
required=False,
type=str,
default=None,
help="output test data path. Default is current directory.",
)
parser.add_argument("--batch_size", required=False, type=int, default=1, help="batch size of input")
parser.add_argument(
"--sequence_length",
required=False,
type=int,
default=128,
help="maximum sequence length of input",
)
parser.add_argument(
"--input_ids_name",
required=False,
type=str,
default=None,
help="input name for input ids",
)
parser.add_argument(
"--segment_ids_name",
required=False,
type=str,
default=None,
help="input name for segment ids",
)
parser.add_argument(
"--input_mask_name",
required=False,
type=str,
default=None,
help="input name for attention mask",
)
parser.add_argument(
"--samples",
required=False,
type=int,
default=1,
help="number of test cases to be generated",
)
parser.add_argument("--seed", required=False, type=int, default=3, help="random seed")
parser.add_argument(
"--verbose",
required=False,
action="store_true",
help="print verbose information",
)
parser.set_defaults(verbose=False)
parser.add_argument(
"--only_input_tensors",
required=False,
action="store_true",
help="only save input tensors and no output tensors",
)
parser.set_defaults(only_input_tensors=False)
args = parser.parse_args()
return args
def create_and_save_test_data(
model: str,
output_dir: str,
batch_size: int,
sequence_length: int,
test_cases: int,
seed: int,
verbose: bool,
input_ids_name: Optional[str],
segment_ids_name: Optional[str],
input_mask_name: Optional[str],
only_input_tensors: bool,
):
"""Create test data for a model, and save test data to a directory.
Args:
model (str): path of ONNX bert model
output_dir (str): output directory
batch_size (int): batch size
sequence_length (int): sequence length
test_cases (int): number of test cases
seed (int): random seed
verbose (bool): whether print more information
input_ids_name (str): graph input name of input_ids
segment_ids_name (str): graph input name of segment_ids
input_mask_name (str): graph input name of input_mask
only_input_tensors (bool): only save input tensors
"""
input_ids, segment_ids, input_mask = get_bert_inputs(model, input_ids_name, segment_ids_name, input_mask_name)
all_inputs = generate_test_data(
batch_size,
sequence_length,
test_cases,
seed,
verbose,
input_ids,
segment_ids,
input_mask,
random_mask_length=False,
)
for i, inputs in enumerate(all_inputs):
directory = os.path.join(output_dir, "test_data_set_" + str(i))
output_test_data(directory, inputs)
if only_input_tensors:
return
import onnxruntime
session = onnxruntime.InferenceSession(model)
output_names = [output.name for output in session.get_outputs()]
for i, inputs in enumerate(all_inputs):
directory = os.path.join(output_dir, "test_data_set_" + str(i))
result = session.run(output_names, inputs)
for i, output_name in enumerate(output_names):
tensor_result = numpy_helper.from_array(np.asarray(result[i]), output_name)
with open(os.path.join(directory, "output_{}.pb".format(i)), "wb") as file:
file.write(tensor_result.SerializeToString())
def main():
args = parse_arguments()
output_dir = args.output_dir
if output_dir is None:
# Default output directory is a sub-directory under the directory of model.
p = Path(args.model)
output_dir = os.path.join(p.parent, "batch_{}_seq_{}".format(args.batch_size, args.sequence_length))
if output_dir is not None:
# create the output directory if not existed
path = Path(output_dir)
path.mkdir(parents=True, exist_ok=True)
else:
print("Directory existed. test data files will be overwritten.")
create_and_save_test_data(
args.model,
output_dir,
args.batch_size,
args.sequence_length,
args.samples,
args.seed,
args.verbose,
args.input_ids_name,
args.segment_ids_name,
args.input_mask_name,
args.only_input_tensors,
)
print("Test data is saved to directory:", output_dir)
if __name__ == "__main__":
main()