m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

640 lines
25 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from enum import Enum
from logging import getLogger
from os import name
from sys import path
from typing import Tuple, Union
import numpy as np
from fusion_base import Fusion
from fusion_options import AttentionMaskFormat
from fusion_utils import FusionUtils, NumpyHelper
from onnx import NodeProto, TensorProto, helper, numpy_helper
from onnx_model import OnnxModel
from shape_infer_helper import SymbolicShapeInferenceHelper, get_shape_from_type_proto
logger = getLogger(__name__)
class AttentionMask:
"""
Fuse Attention subgraph into one Attention node.
"""
def __init__(self, model: OnnxModel):
self.model = model
# A lookup table with mask input as key, and mask index output as value
self.mask_indice = {}
# A lookup table with mask input as key, and cast (to int32) output as value
self.mask_casted = {}
self.utils = FusionUtils(model)
self.mask_format = AttentionMaskFormat.MaskIndexEnd
def set_mask_format(self, mask_format: AttentionMaskFormat):
self.mask_format = mask_format
def set_mask_indice(self, mask, mask_index):
if mask in self.mask_indice:
assert mask_index == self.mask_indice[mask]
self.mask_indice[mask] = mask_index
def get_first_mask(self):
assert len(self.mask_indice) > 0
return next(iter(self.mask_indice))
def process_mask(self, input: str) -> str:
if self.mask_format == AttentionMaskFormat.NoMask:
return None
if input in self.mask_indice:
return self.mask_indice[input]
# Add cast to convert int64 to int32
if self.model.find_graph_input(input):
casted, input_name = self.utils.cast_graph_input_to_int32(input)
else:
input_name, cast_node = self.utils.cast_input_to_int32(input)
casted = True
if casted:
self.mask_casted[input] = input_name
# Attention supports int32 attention mask (2D) since 1.4.0
if self.mask_format == AttentionMaskFormat.AttentionMask:
self.mask_indice[input] = input_name
return input_name
# Add a mask processing node to convert attention mask to mask index (1D)
output_name = self.model.create_node_name("mask_index")
mask_index_node = helper.make_node(
"ReduceSum",
inputs=[input_name],
outputs=[output_name],
name=self.model.create_node_name("ReduceSum", "MaskReduceSum"),
)
mask_index_node.attribute.extend([helper.make_attribute("axes", [1]), helper.make_attribute("keepdims", 0)])
self.model.add_node(mask_index_node)
self.mask_indice[input] = output_name
return output_name
class FusionAttention(Fusion):
"""
Fuse Attention subgraph into one Attention node.
"""
def __init__(
self,
model: OnnxModel,
hidden_size: int,
num_heads: int,
attention_mask: AttentionMask,
use_multi_head_attention: bool = False,
):
attention_op_name = "MultiHeadAttention" if use_multi_head_attention else "Attention"
super().__init__(model, attention_op_name, ["SkipLayerNormalization", "LayerNormalization"])
self.hidden_size = hidden_size
self.num_heads = num_heads
self.attention_mask = attention_mask
self.use_multi_head_attention = use_multi_head_attention
self.mask_filter_value = None
# Flags to show warning only once
self.num_heads_warning = True
self.hidden_size_warning = True
def get_num_heads_and_hidden_size_from_concat(self, concat: NodeProto) -> Tuple[int, int]:
"""
Detect num_heads and hidden_size from Concat node in the following subgraph:
SkipLayerNormalization or EmbedLayerNormalization
/ |
MatMul Shape
| |
Add Gather(indices=0)
| |
| Unsqueeze
| |
| Concat (*, -1, 12, 64)
| /
Reshape
|
Transpose
"""
if len(concat.input) == 4:
num_heads = self.model.get_constant_value(concat.input[2])
head_size = self.model.get_constant_value(concat.input[3])
if (
isinstance(num_heads, np.ndarray)
and num_heads.size == 1
and isinstance(head_size, np.ndarray)
and head_size.size == 1
):
return num_heads[0], num_heads[0] * head_size[0]
return self.num_heads, self.hidden_size
def get_num_heads_and_hidden_size(self, reshape_q: NodeProto) -> Tuple[int, int]:
"""Detect num_heads and hidden_size from a reshape node.
Args:
reshape_q (NodeProto): reshape node for Q
Returns:
Tuple[int, int]: num_heads and hidden_size
"""
# we assume that reshape fusion has done, so the shape is a tensor like [0, 0, num_heads, head_size]
q_shape = self.model.get_initializer(reshape_q.input[1])
if q_shape is None:
concat = self.model.get_parent(reshape_q, 1)
if concat is not None and concat.op_type == "Concat":
return self.get_num_heads_and_hidden_size_from_concat(concat)
logger.debug(f"{reshape_q.input[1]} is not initializer.")
return self.num_heads, self.hidden_size # Fall back to user specified value
q_shape_value = NumpyHelper.to_array(q_shape)
if len(q_shape_value) != 4 or (q_shape_value[2] <= 0 or q_shape_value[3] <= 0):
logger.debug(f"q_shape_value={q_shape_value}. Expected value are like [0, 0, num_heads, head_size].")
return self.num_heads, self.hidden_size # Fall back to user specified value
num_heads = q_shape_value[2]
head_size = q_shape_value[3]
hidden_size = num_heads * head_size
if self.num_heads > 0 and num_heads != self.num_heads:
if self.num_heads_warning:
logger.warning(f"--num_heads is {self.num_heads}. Detected value is {num_heads}. Using detected value.")
self.num_heads_warning = False # Do not show the warning more than once
if self.hidden_size > 0 and hidden_size != self.hidden_size:
if self.hidden_size_warning:
logger.warning(
f"--hidden_size is {self.hidden_size}. Detected value is {hidden_size}. Using detected value."
)
self.hidden_size_warning = False # Do not show the warning more than once
return num_heads, hidden_size
def get_add_qk_str(self, add_qk: NodeProto):
shape_infer = self.model.infer_runtime_shape(update=True)
if shape_infer is None:
return
input_0_shape = shape_infer.get_edge_shape(add_qk.input[0])
input_1_shape = shape_infer.get_edge_shape(add_qk.input[1])
if input_0_shape is None or input_1_shape is None:
logger.debug(f"one of the inputs of {add_qk} is None")
return None
if input_0_shape != input_1_shape:
logger.debug(f"the shape of two inputs of {add_qk} is not same")
return None
return add_qk.input[1]
def create_attention_node(
self,
mask_index: str,
q_matmul: NodeProto,
k_matmul: NodeProto,
v_matmul: NodeProto,
q_add: NodeProto,
k_add: NodeProto,
v_add: NodeProto,
num_heads: int,
hidden_size: int,
input: str,
output: str,
add_qk_str: str,
) -> Union[NodeProto, None]:
"""Create an Attention node.
Args:
mask_index (str): mask input
q_matmul (NodeProto): MatMul node in fully connection for Q
k_matmul (NodeProto): MatMul node in fully connection for K
v_matmul (NodeProto): MatMul node in fully connection for V
q_add (NodeProto): Add bias node in fully connection for Q
k_add (NodeProto): Add bias node in fully connection for K
v_add (NodeProto): Add bias node in fully connection for V
num_heads (int): number of attention heads. If a model is pruned, it is the number of heads after pruning.
hidden_size (int): hidden dimension. If a model is pruned, it is the hidden dimension after pruning.
input (str): input name
output (str): output name
Returns:
Union[NodeProto, None]: the node created or None if failed.
"""
assert num_heads > 0
if hidden_size > 0 and (hidden_size % num_heads) != 0:
logger.debug(f"input hidden size {hidden_size} is not a multiple of num of heads {num_heads}")
return None
q_weight = self.model.get_initializer(q_matmul.input[1])
k_weight = self.model.get_initializer(k_matmul.input[1])
v_weight = self.model.get_initializer(v_matmul.input[1])
q_bias = self.model.get_initializer(q_add.input[1]) or self.model.get_initializer(q_add.input[0])
k_bias = self.model.get_initializer(k_add.input[1]) or self.model.get_initializer(k_add.input[0])
v_bias = self.model.get_initializer(v_add.input[1]) or self.model.get_initializer(v_add.input[0])
if q_weight is None:
print(
f"{q_matmul.input[1]} is not an initializer. "
"Please set do_constant_folding=True in torch.onnx.export to unblock attention fusion"
)
return None
if not (k_weight and v_weight and q_bias and k_bias):
return None
qw = NumpyHelper.to_array(q_weight)
kw = NumpyHelper.to_array(k_weight)
vw = NumpyHelper.to_array(v_weight)
# assert q and k have same shape as expected
assert qw.shape == kw.shape
qw_in_size = qw.shape[0]
kw_in_size = kw.shape[0]
vw_in_size = vw.shape[0]
assert qw_in_size == kw_in_size == vw_in_size
if hidden_size > 0 and hidden_size != qw_in_size:
logger.warning(
f"Input hidden size ({hidden_size}) is not same as weight matrix dimension of q,k,v ({qw_in_size}). "
"Please provide a correct input hidden size or pass in 0"
)
is_qkv_diff_dims = False
if qw.shape != vw.shape:
is_qkv_diff_dims = True
# All the matrices can have the same shape or q, k matrics can have the same shape with v being different
# For 2d weights, the shapes would be [in_size, out_size].
# For 3d weights, shape would be [in_size, a, b] where a*b = out_size
qw_out_size = np.prod(qw.shape[1:])
kw_out_size = np.prod(kw.shape[1:])
vw_out_size = np.prod(vw.shape[1:])
qkv_weight_dim = 0
if is_qkv_diff_dims:
qkv_weight = np.concatenate((qw, kw, vw), axis=1)
qkv_weight_dim = qw_out_size + kw_out_size + vw_out_size
else:
qkv_weight = np.stack((qw, kw, vw), axis=1)
qkv_weight_dim = 3 * qw_out_size
qb = NumpyHelper.to_array(q_bias)
kb = NumpyHelper.to_array(k_bias)
vb = NumpyHelper.to_array(v_bias)
q_bias_shape = np.prod(qb.shape)
k_bias_shape = np.prod(kb.shape)
v_bias_shape = np.prod(vb.shape)
assert q_bias_shape == k_bias_shape == qw_out_size
assert v_bias_shape == vw_out_size
qkv_bias_dim = 0
if is_qkv_diff_dims:
qkv_bias = np.concatenate((qb, kb, vb), axis=0)
qkv_bias_dim = q_bias_shape + k_bias_shape + v_bias_shape
else:
qkv_bias = np.stack((qb, kb, vb), axis=0)
qkv_bias_dim = 3 * q_bias_shape
attention_node_name = self.model.create_node_name("Attention")
if not self.use_multi_head_attention:
weight = helper.make_tensor(
name=attention_node_name + "_qkv_weight",
data_type=TensorProto.FLOAT,
dims=[qw_in_size, qkv_weight_dim],
vals=qkv_weight.flatten().tolist(),
)
# Sometimes weights and bias are stored in fp16
if q_weight.data_type == 10:
weight.CopyFrom(numpy_helper.from_array(NumpyHelper.to_array(weight).astype(np.float16), weight.name))
self.model.add_initializer(weight, self.this_graph_name)
bias = helper.make_tensor(
name=attention_node_name + "_qkv_bias",
data_type=TensorProto.FLOAT,
dims=[qkv_bias_dim],
vals=qkv_bias.flatten().tolist(),
)
if q_bias.data_type == 10:
bias.CopyFrom(numpy_helper.from_array(NumpyHelper.to_array(bias).astype(np.float16), bias.name))
self.model.add_initializer(bias, self.this_graph_name)
# For MultiHeadAttention operator, use separated inputs for query, key and value, and no weights.
if self.use_multi_head_attention:
if add_qk_str is not None:
logger.debug("MultiHeadAttention does not support relative_position_bias: cannot fuse the attention.")
return None
attention_inputs = [
q_matmul.output[0],
k_matmul.output[0],
v_matmul.output[0],
attention_node_name + "_qkv_bias",
]
if mask_index is not None:
attention_inputs.append(mask_index)
attention_node = helper.make_node(
"MultiHeadAttention",
inputs=attention_inputs,
outputs=[output],
name=attention_node_name,
)
else:
attention_inputs = [
input,
attention_node_name + "_qkv_weight",
attention_node_name + "_qkv_bias",
]
if mask_index is not None:
attention_inputs.append(mask_index)
else:
attention_inputs.append("")
if add_qk_str is not None:
attention_inputs.append("") # no past
attention_inputs.append(add_qk_str)
attention_node = helper.make_node(
"Attention",
inputs=attention_inputs,
outputs=[output],
name=attention_node_name,
)
attention_node.domain = "com.microsoft"
attention_node.attribute.extend([helper.make_attribute("num_heads", num_heads)])
if is_qkv_diff_dims:
attention_node.attribute.extend(
[helper.make_attribute("qkv_hidden_sizes", [qw_out_size, kw_out_size, vw_out_size])]
)
if self.mask_filter_value is not None:
attention_node.attribute.extend([helper.make_attribute("mask_filter_value", float(self.mask_filter_value))])
return attention_node
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
# Sometimes we can not fuse skiplayernormalization since the add before layernorm has an output that used by nodes outside skiplayernorm
# Conceptually we treat add before layernorm as skiplayernorm node since they share the same pattern
start_node = normalize_node
if normalize_node.op_type == "LayerNormalization":
add_before_layernorm = self.model.match_parent(normalize_node, "Add", 0)
if add_before_layernorm is not None:
start_node = add_before_layernorm
else:
return
# SkipLayerNormalization has two inputs, and one of them is the root input for attention.
qkv_nodes = self.model.match_parent_path(
start_node,
["Add", "MatMul", "Reshape", "Transpose", "MatMul"],
[None, None, 0, 0, 0],
)
einsum_node = None
if qkv_nodes is not None:
(_, _, reshape_qkv, transpose_qkv, matmul_qkv) = qkv_nodes
else:
# Match Albert
qkv_nodes = self.model.match_parent_path(
start_node, ["Add", "Einsum", "Transpose", "MatMul"], [1, None, 0, 0]
)
if qkv_nodes is not None:
(_, einsum_node, transpose_qkv, matmul_qkv) = qkv_nodes
else:
return
other_inputs = []
for i, input in enumerate(start_node.input):
if input not in output_name_to_node:
continue
if input == qkv_nodes[0].output[0]:
continue
other_inputs.append(input)
if len(other_inputs) != 1:
return
root_input = other_inputs[0]
"""
Match flaubert Mask
|
Mul --> LayerNormalization --> Attention --> MatMul --> Add
| |
| |
+---------------------------------------------------------
"""
mul_before_layernorm = self.model.match_parent(start_node, "Mul", 0)
if mul_before_layernorm is not None:
mul_children = input_name_to_nodes[mul_before_layernorm.output[0]]
if mul_children is not None and len(mul_children) == 2:
layernorm_node = mul_children[1]
if layernorm_node.op_type == "LayerNormalization":
root_input = layernorm_node.output[0]
else:
return
elif mul_children is not None and len(mul_children) == 5:
root_input = mul_before_layernorm.output[0]
else:
return
elif normalize_node.op_type == "LayerNormalization":
children = input_name_to_nodes[root_input]
for child in children:
if child.op_type == "LayerNormalization":
root_input = child.output[0]
children = input_name_to_nodes[root_input]
children_types = [child.op_type for child in children]
if children_types.count("MatMul") != 3:
return
v_nodes = self.model.match_parent_path(matmul_qkv, ["Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, None])
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(_, _, add_v, matmul_v) = v_nodes
is_distill = False
is_distill_add = False
qk_paths = {
"path1": (["Softmax", "Add", "Div", "MatMul"], [0, 0, None, 0]),
"path2": (["Softmax", "Add", "Mul", "MatMul"], [0, 0, None, 0]),
"path3": (["Softmax", "Where", "MatMul", "Div"], [0, 0, 2, 0]),
"path4": (["Softmax", "Add", "Where", "MatMul"], [0, 0, 0, 2]),
}
qk_nodes = None
for k, v in qk_paths.items():
qk_nodes = self.model.match_parent_path(matmul_qkv, v[0], v[1])
if qk_nodes is None:
continue
if k == "path3":
is_distill = True
if k == "path4":
is_distill_add = True
break
if qk_nodes is None:
logger.debug("fuse_attention: failed to match qk path")
return
add_qk = None
matmul_qk = None
where_qk = None
if is_distill:
(_, where_qk, matmul_qk, _) = qk_nodes
elif is_distill_add:
(_, add_qk, where_qk, matmul_qk) = qk_nodes
else:
(_, add_qk, _, matmul_qk) = qk_nodes
q_nodes = self.model.match_parent_path(matmul_qk, ["Transpose", "Reshape", "Add", "MatMul"], [0, 0, 0, None])
if q_nodes is None:
q_nodes = self.model.match_parent_path(
matmul_qk,
["Div", "Transpose", "Reshape", "Add", "MatMul"],
[0, 0, 0, 0, None],
)
if q_nodes is None:
logger.debug("fuse_attention: failed to match q path")
return
reshape_q = q_nodes[-3]
add_q = q_nodes[-2]
matmul_q = q_nodes[-1]
k_nodes = self.model.match_parent_path(matmul_qk, ["Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, None])
if k_nodes is None:
k_nodes = self.model.match_parent_path(
matmul_qk,
["Transpose", "Transpose", "Reshape", "Add", "MatMul"],
[1, 0, 0, 0, None],
)
if k_nodes is None:
logger.debug("fuse_attention: failed to match k path")
return
add_k = k_nodes[-2]
matmul_k = k_nodes[-1]
# Note that Cast might be removed by OnnxRuntime so we match two patterns here.
mask_nodes = None
add_qk_str = None
if is_distill:
_, mask_nodes, _ = self.model.match_parent_paths(
where_qk,
[
(["Expand", "Reshape", "Equal"], [0, 0, 0]),
(["Equal", "Unsqueeze", "Unsqueeze"], [0, 0, 0]),
(["Cast", "Expand", "Reshape", "Equal"], [0, 0, 0, 0]),
],
output_name_to_node,
)
elif is_distill_add:
_, mask_nodes, _ = self.model.match_parent_paths(
where_qk,
[
(["Cast", "Equal", "Unsqueeze", "Unsqueeze"], [0, 0, 0, 0]),
(["Equal", "Unsqueeze", "Unsqueeze"], [0, 0, 0]),
],
output_name_to_node,
)
if add_qk is not None:
add_qk_str = self.get_add_qk_str(add_qk)
if add_qk_str is None:
logger.debug(f"fuse_attention: failed to verify shape inference of {add_qk}")
return
else:
_, mask_nodes, _ = self.model.match_parent_paths(
add_qk,
[
(
["Mul", "Sub", "Cast", "Unsqueeze", "Unsqueeze"],
[None, 0, 1, 0, 0],
),
(["Mul", "Sub", "Unsqueeze", "Unsqueeze"], [None, 0, 1, 0]),
],
output_name_to_node,
)
if mask_nodes is None:
logger.debug("fuse_attention: failed to match mask path")
return
if len(mask_nodes) > 1 and mask_nodes[0].op_type == "Mul":
_, mul_val = self.model.get_constant_input(mask_nodes[0])
if mul_val != -10000:
self.mask_filter_value = mul_val
if matmul_v.input[0] == root_input and matmul_q.input[0] == root_input and matmul_k.input[0] == root_input:
mask_index = self.attention_mask.process_mask(mask_nodes[-1].input[0])
attention_last_node = reshape_qkv if einsum_node is None else transpose_qkv
q_num_heads, q_hidden_size = self.get_num_heads_and_hidden_size(reshape_q)
# number of heads are same for all the paths, hence to create attention node, we pass the q_num_heads
# the input_hidden_size represents the input hidden size, this is used as needed but hidden sizes for Q, K are extracted appropriately
new_node = self.create_attention_node(
mask_index,
matmul_q,
matmul_k,
matmul_v,
add_q,
add_k,
add_v,
q_num_heads,
q_hidden_size,
root_input,
attention_last_node.output[0],
add_qk_str,
)
if new_node is None:
return
self.nodes_to_add.append(new_node)
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
if einsum_node is not None:
unique_index = einsum_node.input[0]
new_edge = "edge_modified_" + unique_index
shape_tensor = helper.make_tensor(
name="shape_modified_tensor" + unique_index,
data_type=TensorProto.INT64,
dims=[4],
vals=np.int64([0, 0, q_num_heads, int(q_hidden_size / q_num_heads)]).tobytes(),
raw=True,
)
self.model.add_initializer(shape_tensor, self.this_graph_name)
self.model.add_node(
helper.make_node(
"Reshape",
[attention_last_node.output[0], shape_tensor.name],
[new_edge],
"reshape_modified_" + unique_index,
),
self.this_graph_name,
)
einsum_node.input[0] = new_edge
self.nodes_to_remove.extend([attention_last_node, transpose_qkv, matmul_qkv])
self.nodes_to_remove.extend(qk_nodes)
# For MultiHeadAttention operator, MatMul nodes for Q/K/V projection shall not be fused.
self.nodes_to_remove.extend(q_nodes if not self.use_multi_head_attention else q_nodes[:-1])
self.nodes_to_remove.extend(k_nodes if not self.use_multi_head_attention else k_nodes[:-1])
self.nodes_to_remove.extend(v_nodes if not self.use_multi_head_attention else v_nodes[:-1])
# Use prune graph to remove mask nodes since they are shared by all attention nodes.
self.prune_graph = True