m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

383 lines
16 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import Tuple, Union
import numpy as np
from fusion_base import Fusion
from fusion_utils import NumpyHelper
from onnx import NodeProto, TensorProto, helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionAttentionUnet(Fusion):
"""
Fuse Attention subgraph of UNet into one Attention node.
"""
def __init__(
self, model: OnnxModel, hidden_size: int, num_heads: int, is_cross_attention: bool, enable_packed_kv: bool
):
super().__init__(model, "MultiHeadAttention" if is_cross_attention else "Attention", ["LayerNormalization"])
self.hidden_size = hidden_size
self.num_heads = num_heads
self.is_cross_attention = is_cross_attention
self.enable_packed_kv = enable_packed_kv
# Flags to show warning only once
self.num_heads_warning = True
self.hidden_size_warning = True
def get_num_heads_and_hidden_size(self, reshape_q: NodeProto, layernorm_node: NodeProto) -> Tuple[int, int]:
"""Detect num_heads and hidden_size from a reshape node.
Args:
reshape_q (NodeProto): reshape node for Q
add_q (NodeProto): add node for Q
Returns:
Tuple[int, int]: num_heads and hidden_size
"""
# we assume that reshape fusion has done, so the shape is a tensor like [0, 0, num_heads, head_size]
q_shape_value = self.model.get_constant_value(reshape_q.input[1])
if q_shape_value is None:
logger.debug(f"{reshape_q.input[1]} is not constant.")
return self.num_heads, self.hidden_size # Fall back to user specified value
if len(q_shape_value) != 4 or q_shape_value[2] <= 0:
logger.debug(f"q_shape_value={q_shape_value}. Expected value are like [0, 0, num_heads, -1].")
return self.num_heads, self.hidden_size # Fall back to user specified value
num_heads = q_shape_value[2]
layernorm_bias = self.model.get_initializer(layernorm_node.input[1])
if layernorm_bias is None:
logger.debug(f"{layernorm_node.input[1]} is not initializer.")
return self.num_heads, self.hidden_size # Fall back to user specified value
hidden_size = NumpyHelper.to_array(layernorm_bias).shape[0]
if self.num_heads > 0 and num_heads != self.num_heads:
if self.num_heads_warning:
logger.warning(f"--num_heads is {self.num_heads}. Detected value is {num_heads}. Using detected value.")
self.num_heads_warning = False # Do not show the warning more than once
if self.hidden_size > 0 and hidden_size != self.hidden_size:
if self.hidden_size_warning:
logger.warning(
f"--hidden_size is {self.hidden_size}. Detected value is {hidden_size}. Using detected value."
)
self.hidden_size_warning = False # Do not show the warning more than once
return num_heads, hidden_size
def create_attention_node(
self,
q_matmul: NodeProto,
k_matmul: NodeProto,
v_matmul: NodeProto,
num_heads: int,
hidden_size: int,
input: str,
output: str,
) -> Union[NodeProto, None]:
"""Create an Attention node.
Args:
q_matmul (NodeProto): MatMul node in fully connection for Q
k_matmul (NodeProto): MatMul node in fully connection for K
v_matmul (NodeProto): MatMul node in fully connection for V
q_add (NodeProto): Add bias node in fully connection for Q
k_add (NodeProto): Add bias node in fully connection for K
v_add (NodeProto): Add bias node in fully connection for V
num_heads (int): number of attention heads. If a model is pruned, it is the number of heads after pruning.
hidden_size (int): hidden dimension. If a model is pruned, it is the hidden dimension after pruning.
input (str): input name
output (str): output name
Returns:
Union[NodeProto, None]: the node created or None if failed.
"""
is_self_attention = not self.is_cross_attention
if is_self_attention:
if q_matmul.input[0] != input or k_matmul.input[0] != input or v_matmul.input[0] != input:
logger.debug(
"For self attention, input hidden state for q and k/v shall be same. Got %s, %s, %s",
q_matmul.input[0],
k_matmul.input[0],
v_matmul.input[0],
)
return None
else:
if q_matmul.input[0] != input or (k_matmul.input[0] != v_matmul.input[0]) or (k_matmul.input[0] == input):
logger.debug(
"For cross attention, input hidden state for q and k/v shall be different. Got %s, %s, %s",
q_matmul.input[0],
k_matmul.input[0],
v_matmul.input[0],
)
return None
if hidden_size > 0 and (hidden_size % num_heads) != 0:
logger.debug(f"input hidden size {hidden_size} is not a multiple of num of heads {num_heads}")
return None
q_weight = self.model.get_initializer(q_matmul.input[1])
k_weight = self.model.get_initializer(k_matmul.input[1])
v_weight = self.model.get_initializer(v_matmul.input[1])
if not (q_weight and k_weight and v_weight):
return None
# Sometimes weights are stored in fp16
if q_weight.data_type == 10:
logger.debug("weights are in fp16. Please run fp16 conversion after optimization")
return None
qw = NumpyHelper.to_array(q_weight)
kw = NumpyHelper.to_array(k_weight)
vw = NumpyHelper.to_array(v_weight)
logger.debug(f"qw={qw.shape} kw={kw.shape} vw={vw.shape} hidden_size={hidden_size}")
# assert q and k have same shape as expected
if is_self_attention:
if qw.shape != kw.shape or qw.shape != vw.shape:
return None
qw_in_size = qw.shape[0]
kw_in_size = kw.shape[0]
vw_in_size = vw.shape[0]
assert qw_in_size == kw_in_size and kw_in_size == vw_in_size
if hidden_size > 0 and hidden_size != qw_in_size:
raise ValueError(
f"Input hidden size ({hidden_size}) is not same as weight dimension of q,k,v ({qw_in_size}). "
"Please provide a correct input hidden size or pass in 0"
)
# All the matrices can have the same shape or q, k matrics can have the same shape with v being different
# For 2d weights, the shapes would be [in_size, out_size].
# For 3d weights, shape would be [in_size, a, b] where a*b = out_size
qw_out_size = np.prod(qw.shape[1:])
qkv_weight = np.stack((qw, kw, vw), axis=1)
qkv_weight_dim = 3 * qw_out_size
attention_node_name = self.model.create_node_name("Attention")
weight = helper.make_tensor(
name=attention_node_name + "_qkv_weight",
data_type=TensorProto.FLOAT,
dims=[qw_in_size, qkv_weight_dim],
vals=qkv_weight.flatten().tolist(),
)
self.model.add_initializer(weight, self.this_graph_name)
else: # cross attention
attention_node_name = self.model.create_node_name("MultiHeadAttention")
if self.enable_packed_kv:
if kw.shape != vw.shape:
return None
kw_in_size = kw.shape[0]
vw_in_size = vw.shape[0]
assert kw_in_size == vw_in_size
qw_out_size = qw.shape[1]
kw_out_size = kw.shape[1]
vw_out_size = vw.shape[1]
assert qw_out_size == vw_out_size and kw_out_size == vw_out_size
c = kw_in_size
n = num_heads
h = kw_out_size // num_heads
# Concat and interleave weights so that the output of fused KV GEMM has [B, S_kv, N, 2, H] shape
kv_weight = np.dstack([kw.reshape(c, n, h), vw.reshape(c, n, h)]).reshape(c, n * 2 * h)
matmul_node_name = self.model.create_node_name("MatMul", name_prefix="MatMul_KV")
weight = helper.make_tensor(
name=matmul_node_name + "_weight",
data_type=TensorProto.FLOAT,
dims=[kv_weight.shape[0], kv_weight.shape[1]],
vals=kv_weight.flatten().tolist(),
)
self.model.add_initializer(weight, self.this_graph_name)
matmul_node = helper.make_node(
"MatMul",
inputs=[k_matmul.input[0], matmul_node_name + "_weight"],
outputs=[matmul_node_name + "_out"],
name=matmul_node_name,
)
self.node_name_to_graph_name[matmul_node.name] = self.this_graph_name
shape_tensor = helper.make_tensor(
name=matmul_node_name + "_reshape_shape",
data_type=TensorProto.INT64,
dims=[5],
vals=[0, 0, n, 2, h],
)
self.model.add_initializer(shape_tensor, self.this_graph_name)
reshape_node = helper.make_node(
"Reshape",
inputs=[matmul_node_name + "_out", matmul_node_name + "_reshape_shape"],
outputs=[k_matmul.output[0]],
name=matmul_node_name + "_reshape",
)
self.node_name_to_graph_name[reshape_node.name] = self.this_graph_name
self.nodes_to_add.extend([matmul_node, reshape_node])
self.nodes_to_remove.extend([k_matmul, v_matmul])
# No bias, use zeros
qkv_bias = np.zeros([3, hidden_size], dtype=np.float32)
qkv_bias_dim = 3 * hidden_size
bias = helper.make_tensor(
name=attention_node_name + "_qkv_bias",
data_type=TensorProto.FLOAT,
dims=[qkv_bias_dim],
vals=qkv_bias.flatten().tolist(),
)
self.model.add_initializer(bias, self.this_graph_name)
if is_self_attention:
attention_inputs = [
input,
attention_node_name + "_qkv_weight",
attention_node_name + "_qkv_bias",
]
else:
if not self.enable_packed_kv:
attention_inputs = [
q_matmul.output[0],
k_matmul.output[0],
v_matmul.output[0],
attention_node_name + "_qkv_bias",
]
else:
attention_inputs = [
q_matmul.output[0],
k_matmul.output[0],
]
attention_node = helper.make_node(
"Attention" if is_self_attention else "MultiHeadAttention",
inputs=attention_inputs,
outputs=[output],
name=attention_node_name,
)
attention_node.domain = "com.microsoft"
attention_node.attribute.extend([helper.make_attribute("num_heads", num_heads)])
counter_name = (
"Attention (self attention)"
if is_self_attention
else "MultiHeadAttention ({})".format(
"cross attention with packed kv" if self.enable_packed_kv else "cross attention"
)
)
self.increase_counter(counter_name)
return attention_node
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
node_before_layernorm = self.model.match_parent(normalize_node, "Add", 0)
# In SD 1.5, for self attention, LayerNorm has parent Reshape
if node_before_layernorm is None and not self.is_cross_attention:
node_before_layernorm = self.model.match_parent(normalize_node, "Reshape", 0)
if node_before_layernorm is None:
return
root_input = node_before_layernorm.output[0]
children_nodes = input_name_to_nodes[root_input]
skip_add = None
for node in children_nodes:
if node.op_type == "Add": # or node.op_type == "SkipLayerNormalization":
skip_add = node
break
if skip_add is None:
return
another_input = 1 if skip_add.input[0] == root_input else 0
qkv_nodes = self.model.match_parent_path(
skip_add,
["Add", "MatMul", "Reshape", "Transpose", "Reshape", "MatMul"],
[another_input, None, None, 0, 0, 0],
)
if qkv_nodes is None:
return
(_, _, reshape_qkv, transpose_qkv, _, matmul_qkv) = qkv_nodes
# No bias. For cross-attention, the input of the MatMul is encoder_hidden_states graph input.
v_nodes = self.model.match_parent_path(matmul_qkv, ["Reshape", "Transpose", "Reshape", "MatMul"], [1, 0, 0, 0])
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(_, _, _, matmul_v) = v_nodes
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Mul", "MatMul"], [0, 0, 0])
if qk_nodes is not None:
(_softmax_qk, _mul_qk, matmul_qk) = qk_nodes
else:
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Add", "Mul", "MatMul"], [0, 0, 0, 0])
if qk_nodes is not None:
(_softmax_qk, _add_zero, _mul_qk, matmul_qk) = qk_nodes
else:
logger.debug("fuse_attention: failed to match qk path")
return
q_nodes = self.model.match_parent_path(matmul_qk, ["Reshape", "Transpose", "Reshape", "MatMul"], [0, 0, 0, 0])
if q_nodes is None:
logger.debug("fuse_attention: failed to match q path")
return
(_, _transpose_q, reshape_q, matmul_q) = q_nodes
k_nodes = self.model.match_parent_path(
matmul_qk, ["Transpose", "Reshape", "Transpose", "Reshape", "MatMul"], [1, 0, 0, 0, 0]
)
if k_nodes is None:
logger.debug("fuse_attention: failed to match k path")
return
(_, _, _, _, matmul_k) = k_nodes
attention_last_node = reshape_qkv
q_num_heads, q_hidden_size = self.get_num_heads_and_hidden_size(reshape_q, normalize_node)
if q_num_heads <= 0:
logger.debug("fuse_attention: failed to detect num_heads")
return
# number of heads are same for all the paths, hence to create attention node, we pass the q_num_heads
new_node = self.create_attention_node(
matmul_q,
matmul_k,
matmul_v,
q_num_heads,
q_hidden_size,
input=normalize_node.output[0],
output=attention_last_node.output[0],
)
if new_node is None:
return
self.nodes_to_add.append(new_node)
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
self.nodes_to_remove.extend([attention_last_node, transpose_qkv])
# Use prune graph to remove nodes since they are shared by all attention nodes.
self.prune_graph = True