m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

122 lines
4.0 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import Dict, List, Union
from fusion_base import Fusion
from fusion_utils import NumpyHelper
from onnx import NodeProto, TensorProto, helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionGemmFastGelu(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "GemmFastGelu", "FastGelu", "GemmFastGelu")
self.shape_infer = None
self.shape_infer_done = False
def get_dimensions_from_tensor_proto(self, tensor_proto: TensorProto) -> Union[int, None]:
if tensor_proto.type.tensor_type.HasField("shape"):
return len(tensor_proto.type.tensor_type.shape.dim)
else:
return None
def get_dimensions(self, input_name: str) -> Union[int, None]:
graph_input = self.model.find_graph_input(input_name)
if graph_input:
return self.get_dimensions_from_tensor_proto(graph_input)
if not self.shape_infer_done:
self.shape_infer = self.model.infer_runtime_shape({}, update=True)
self.shape_infer_done = True
if self.shape_infer is not None:
return self.get_dimensions_from_tensor_proto(self.shape_infer.known_vi_[input_name])
return None
def fuse(
self,
node: NodeProto,
input_name_to_nodes: Dict[str, List[NodeProto]],
output_name_to_node: Dict[str, NodeProto],
):
"""
This pattern is from PyTorch bert model
Fuse MatMul with FastGelu into one node:
[root] --> MatMul --> FastGelu -->
"""
has_bias = False
if len(node.input) == 2:
has_bias = True
match_nodes = self.model.match_parent_path(node, ["MatMul"], [0])
if match_nodes is None:
return
matmul = match_nodes[0]
# matmul input X should >= two dimension, input weight should be two dimension
weight_index = -1
x_dims = 0
weight = None
for i, input in enumerate(matmul.input):
initializer = self.model.get_initializer(input)
if initializer is None:
x_dims = self.get_dimensions(matmul.input[i])
else:
weight_index = i
weight = NumpyHelper.to_array(initializer)
if weight is None:
return
if len(weight.shape) != 2:
return
if x_dims < len(weight.shape):
return
# bias weight should be one dimension
bias_index = -1
if has_bias:
bias_weight = None
for i, input in enumerate(node.input):
initializer = self.model.get_initializer(input)
if initializer is None:
continue
bias_index = i
bias_weight = NumpyHelper.to_array(initializer)
break
if bias_weight is None:
return
if len(bias_weight.shape) != 1:
return
subgraph_nodes = [node, matmul]
if not self.model.is_safe_to_fuse_nodes(
subgraph_nodes, [node.output[0]], input_name_to_nodes, output_name_to_node
):
return
self.nodes_to_remove.extend(subgraph_nodes)
inputs = (
[matmul.input[1 - weight_index], matmul.input[weight_index], node.input[bias_index]]
if has_bias
else [matmul.input[1 - weight_index], matmul.input[weight_index]]
)
fused_node = helper.make_node(
"GemmFastGelu",
inputs=inputs,
outputs=node.output,
name=self.model.create_node_name("GemmFastGelu"),
)
fused_node.domain = "com.microsoft"
self.nodes_to_add.append(fused_node)
self.node_name_to_graph_name[fused_node.name] = self.this_graph_name