m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

542 lines
21 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
import numpy as np
from fusion_base import Fusion
from fusion_utils import FusionUtils
from onnx import TensorProto, helper, numpy_helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionGptAttentionPastBase(Fusion):
"""Base class for GPT Attention Fusion with past state"""
def __init__(self, model: OnnxModel, num_heads: int):
super().__init__(model, "Attention", ["LayerNormalization", "SkipLayerNormalization"], "with past")
self.num_heads = num_heads
self.utils = FusionUtils(model)
self.casted_attention_mask = {} # map from name of attention mask to the name that casted to int32
self.mask_filter_value = None
def match_past_pattern_1(self, concat_k, concat_v, output_name_to_node):
# Pattern 1:
# {past}
# / \
# / \
# Gather(axes=0, indices=0) Gather(indices=1)
# | |
# Transpose (perm=0,1,3,2) |
# | |
# Concat_k Concat_v
# | /
# Transpose (perm=0,1,3,2) /
# | /
# Unsqueeze Unsqueeze
# \ /
# \ /
# Concat
# |
# {present}
gather = self.model.get_parent(concat_v, 0, output_name_to_node)
if gather.op_type != "Gather":
logger.debug("match_past_pattern_1: expect Gather for past")
return None
if not self.model.find_constant_input(gather, 1) == 1:
logger.debug("match_past_pattern_1: expect indices=1 for Gather of past")
return None
past = gather.input[0]
parent = self.model.get_parent(concat_k, 0, output_name_to_node)
if parent.op_type == "Gather":
gather_past_k = parent
else:
past_k_nodes = self.model.match_parent_path(concat_k, ["Transpose", "Gather"], [0, 0])
if past_k_nodes is None:
logger.debug("match_past_pattern_1: failed match Transpose and Gather")
return None
gather_past_k = past_k_nodes[-1]
if not self.model.find_constant_input(gather_past_k, 0) == 1:
logger.debug("match_past_pattern_1: expect indices=0 for Gather k of past")
return None
past_k = gather_past_k.input[0]
if past != past_k:
logger.debug("match_past_pattern_1: expect past to be same")
return None
return past
def match_past_pattern_2(self, concat_k, concat_v, output_name_to_node):
# Pattern 2:
# Split (QKV)
# / | |
# / | +----------------------+
# | |
# | {past} |
# | | |
# Reshape Split Reshape
# | / \ |
# Transpose_k Squeeze Squeeze Transpose_v
# | | \ /
# +------|---+ \ /
# | | \ /
# Concat_k Concat_v
# | |
# Unsqueeze Unsqueeze
# \ /
# Concat
# |
# {present}
#
squeeze = self.model.get_parent(concat_v, 0, output_name_to_node)
if squeeze.op_type != "Squeeze":
logger.debug("match_past_pattern_2: expect Squeeze as parent of concat_v")
return None
split = self.model.get_parent(squeeze, 0, output_name_to_node)
if split.op_type != "Split":
logger.debug("match_past_pattern_2: expect Split for past path")
return None
opset_version = self.model.get_opset_version()
if opset_version < 13:
if not FusionUtils.check_node_attribute(squeeze, "axes", [0]):
logger.debug("match_past_pattern_2: axes != [0] for Squeeze in past path")
return None
if not FusionUtils.check_node_attribute(split, "split", [1, 1]):
logger.debug("match_past_pattern_2: split != [1, 1] for Split in past path")
return None
else:
if not self.utils.check_node_input_value(squeeze, 1, [0]):
logger.debug("match_past_pattern_2: axes != [0] for Squeeze in past path")
return None
if not self.utils.check_node_input_value(split, 1, [1, 1]):
logger.debug("match_past_pattern_2: split != [1, 1] for Split in past path")
return None
if not FusionUtils.check_node_attribute(split, "axis", 0, default_value=0):
logger.debug("match_past_pattern_2: attribute axis of Split are not expected in past path")
return None
past = split.input[0]
past_k_nodes = self.model.match_parent_path(concat_k, ["Squeeze", "Split"], [0, 0])
if past_k_nodes is None:
logger.debug("match_past_pattern_2: failed to match past_k_nodes path")
return None
past_k = past_k_nodes[-1].input[0]
if past != past_k:
logger.info("match_past_pattern_2: expect past to be same")
return None
return past
def match_present(self, concat_v, input_name_to_nodes):
unsqueeze_present_v = self.model.find_first_child_by_type(
concat_v, "Unsqueeze", input_name_to_nodes, recursive=False
)
if not unsqueeze_present_v:
logger.info("expect unsqueeze for present")
return None
concat_present = self.model.find_first_child_by_type(
unsqueeze_present_v, "Concat", input_name_to_nodes, recursive=False
)
if not concat_present:
logger.info("expect concat for present")
return None
present = concat_present.output[0]
return present
def cast_attention_mask(self, input_name):
if input_name in self.casted_attention_mask:
attention_mask_input_name = self.casted_attention_mask[input_name]
elif self.model.find_graph_input(input_name):
casted, attention_mask_input_name = self.utils.cast_graph_input_to_int32(input_name)
self.casted_attention_mask[input_name] = attention_mask_input_name
else:
attention_mask_input_name, cast_node = self.utils.cast_input_to_int32(input_name)
self.casted_attention_mask[input_name] = attention_mask_input_name
return attention_mask_input_name
class FusionGptAttention(FusionGptAttentionPastBase):
"""
Fuse GPT-2 Attention with past state subgraph into one Attention node.
"""
def __init__(self, model: OnnxModel, num_heads: int):
super().__init__(model, num_heads)
def create_attention_node(
self,
fc_weight,
fc_bias,
gemm_qkv,
past,
present,
input,
output,
mask,
is_unidirectional,
):
attention_node_name = self.model.create_node_name("GptAttention")
attention_node = helper.make_node(
"Attention",
inputs=[input, fc_weight, fc_bias, mask, past],
outputs=[attention_node_name + "_output", present],
name=attention_node_name,
)
attention_node.domain = "com.microsoft"
attention_node.attribute.extend(
[
helper.make_attribute("num_heads", self.num_heads),
helper.make_attribute("unidirectional", 1 if is_unidirectional else 0),
]
)
if self.mask_filter_value is not None:
attention_node.attribute.extend([helper.make_attribute("mask_filter_value", float(self.mask_filter_value))])
matmul_node = helper.make_node(
"MatMul",
inputs=[attention_node_name + "_output", gemm_qkv.input[1]],
outputs=[attention_node_name + "_matmul_output"],
name=attention_node_name + "_matmul",
)
add_node = helper.make_node(
"Add",
inputs=[attention_node_name + "_matmul_output", gemm_qkv.input[2]],
outputs=[output],
name=attention_node_name + "_add",
)
self.nodes_to_add.extend([attention_node, matmul_node, add_node])
self.node_name_to_graph_name[attention_node.name] = self.this_graph_name
self.node_name_to_graph_name[matmul_node.name] = self.this_graph_name
self.node_name_to_graph_name[add_node.name] = self.this_graph_name
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
past = None
present = None
return_indice = []
is_normalize_node_skiplayernorm = normalize_node.op_type == "SkipLayerNormalization"
qkv_nodes = None
if not is_normalize_node_skiplayernorm:
qkv_nodes = self.model.match_parent_path(
normalize_node,
["Add", "Reshape", "Gemm", "Reshape", "Reshape", "Transpose", "MatMul"],
[0, None, 0, 0, 0, 0, 0],
output_name_to_node=output_name_to_node,
return_indice=return_indice,
) # yapf: disable
else:
qkv_nodes = self.model.match_parent_path(
normalize_node,
["Reshape", "Gemm", "Reshape", "Reshape", "Transpose", "MatMul"],
[None, 0, 0, 0, 0, 0],
output_name_to_node=output_name_to_node,
return_indice=return_indice,
) # yapf: disable
if qkv_nodes is None:
return
another_input = None
if not is_normalize_node_skiplayernorm:
(
add_qkv,
reshape_qkv,
gemm_qkv,
reshape_1,
reshape_2,
transpose_qkv,
matmul_qkv,
) = qkv_nodes
another_input = add_qkv.input[1 - return_indice[0]]
else:
(
reshape_qkv,
gemm_qkv,
reshape_1,
reshape_2,
transpose_qkv,
matmul_qkv,
) = qkv_nodes
v_nodes = self.model.match_parent_path(matmul_qkv, ["Concat", "Transpose", "Reshape", "Split"], [1, 1, 0, 0])
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(concat_v, transpose_v, reshape_v, split_fc) = v_nodes
# Try match pattern using Gemm + LayerNormalization
fc_nodes = self.model.match_parent_path(
split_fc,
["Reshape", "Gemm", "Reshape", "LayerNormalization"],
[0, 0, 0, 0],
output_name_to_node,
)
# Try match pattern using Gemm + SkipLayerNormalization
if fc_nodes is None:
fc_nodes = self.model.match_parent_path(
split_fc,
["Reshape", "Gemm", "Reshape", "SkipLayerNormalization"],
[0, 0, 0, 0],
output_name_to_node,
)
# Try match pattern using MatMul
if fc_nodes is None:
# LayerNormalization
fc_nodes = self.model.match_parent_path(
split_fc,
["Add", "MatMul", "LayerNormalization"],
[0, None, 0],
output_name_to_node,
)
# SkipLayerNormalization
if fc_nodes is None:
fc_nodes = self.model.match_parent_path(
split_fc,
["Add", "MatMul", "SkipLayerNormalization"],
[0, None, 0],
output_name_to_node,
)
if fc_nodes is None:
logger.debug("fuse_attention: failed to match fc path")
return
fc_weight = fc_nodes[1].input[1]
i, _ = self.model.get_constant_input(fc_nodes[0])
fc_bias = fc_nodes[0].input[i]
else:
fc_weight = fc_nodes[1].input[1]
fc_bias = fc_nodes[1].input[2]
layernorm_before_attention = fc_nodes[-1]
# `another_input` will be non-None only if
# (1) SkipLayerNorm fusion wasn't turned ON
# (2) SkipLayerNorm fusion was turned ON but upstream layer's LayerNorm + Add was not
# fused into a SkipLayerNorm. This can happen if the shapes to the Add node are different.
# So, keep the following check if SkipLayerNorm fusion is turned ON or OFF.
if another_input is not None and not another_input in layernorm_before_attention.input:
logger.debug("Upstream Add and (Skip)LayerNormalization shall have one same input")
return
is_unidirectional = True
slice_mask = None
input_mask_nodes = None
concat_k_to_match = None
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "Sub", "Mul", "Div", "MatMul"], [0, 0, 0, 0, 0])
if qk_nodes is not None:
(softmax_qk, sub_qk, mul_qk, div_qk, matmul_qk) = qk_nodes
mask_nodes = self.model.match_parent_path(
sub_qk,
[
"Mul",
"Sub",
"Slice",
"Slice",
"Unsqueeze",
"Sub",
"Squeeze",
"Slice",
"Shape",
"Div",
],
[1, 0, 1, 0, 1, 0, 0, 0, 0, 0],
) # yapf: disable
if mask_nodes is None:
logger.debug("fuse_attention: failed to match unidirectional mask path")
return
div_mask = mask_nodes[-1]
slice_mask = mask_nodes[3]
if div_qk != div_mask:
logger.debug("fuse_attention: skip since div_qk != div_mask")
return
if len(mask_nodes) > 1 and mask_nodes[0].op_type == "Mul":
_, mul_val = self.model.get_constant_input(mask_nodes[0])
if mul_val != -10000:
self.mask_filter_value = -mul_val
else:
# New pattern for gpt2 from PyTorch 1.5.0 and Transformers 2.9.0.
i, qk_nodes, _ = self.model.match_parent_paths(
matmul_qkv,
[
(["Softmax", "Where", "Div", "MatMul"], [0, 0, 1, 0]),
(["Softmax", "Add", "Where", "Div", "MatMul"], [0, 0, None, 1, 0]),
],
output_name_to_node,
)
if qk_nodes is None:
logger.debug("fuse_attention: failed to match qk nodes")
return
where_qk = qk_nodes[-3]
div_qk = qk_nodes[-2]
matmul_qk = qk_nodes[-1]
if i == 1:
add_qk = qk_nodes[1]
_, input_mask_nodes, _ = self.model.match_parent_paths(
add_qk,
[
(
["Mul", "Sub", "Cast", "Unsqueeze", "Unsqueeze", "Reshape"],
[None, 0, 1, 0, 0, 0],
),
(
["Mul", "Sub", "Unsqueeze", "Unsqueeze", "Reshape"],
[None, 0, 1, 0, 0],
),
(
["Mul", "Sub", "Unsqueeze", "Unsqueeze"],
[None, 0, 1, 0],
), # useless cast and reshape are removed.
],
output_name_to_node,
) # yapf: disable
if input_mask_nodes is None:
logger.debug("fuse_attention: failed to match input attention mask path")
return
if len(input_mask_nodes) > 1 and input_mask_nodes[0].op_type == "Mul":
_, mul_val = self.model.get_constant_input(input_mask_nodes[0])
if mul_val != -10000:
self.mask_filter_value = mul_val
mask_nodes = self.model.match_parent_path(
where_qk,
[
"Cast",
"Slice",
"Slice",
"Unsqueeze",
"Sub",
"Squeeze",
"Slice",
"Shape",
],
[0, 0, 0, 1, 0, 0, 0, 0],
output_name_to_node,
) # yapf: disable
if mask_nodes is None:
# TODO: match mask path for GPT2LMHeadModel_BeamSearchStep.
logger.debug("fuse_attention: failed to match mask path")
return
slice_mask = mask_nodes[2]
div_or_concat = self.model.get_parent(mask_nodes[-1], 0, output_name_to_node)
if div_or_concat.op_type == "Div":
div_mask = div_or_concat
if div_qk != div_mask:
logger.debug("fuse_attention: skip since div_qk != div_mask")
return
elif div_or_concat.op_type == "Concat":
concat_k_to_match = div_or_concat
else:
logger.debug("fuse_attention: failed to match mask path")
# Validate that the mask data is either lower triangular (unidirectional) or all ones
mask_data = numpy_helper.to_array(self.model.get_initializer(slice_mask.input[0]))
if not (
len(mask_data.shape) == 4 and mask_data.shape[:2] == (1, 1) and mask_data.shape[2] == mask_data.shape[3]
):
logger.debug("fuse_attention: skip since mask shape is not 1x1xWxW")
return
if np.allclose(mask_data, np.ones_like(mask_data)):
is_unidirectional = False
elif not np.allclose(mask_data, np.tril(np.ones_like(mask_data))):
logger.debug("fuse_attention: skip since mask is neither lower triangular nor ones")
return
q_nodes = self.model.match_parent_path(matmul_qk, ["Transpose", "Reshape", "Split"], [0, 0, 0])
if q_nodes is None:
logger.debug("fuse_attention: failed to match q path")
return
(transpose_q, reshape_q, split_q) = q_nodes
if split_fc != split_q:
logger.debug("fuse_attention: skip since split_fc != split_q")
return
k_nodes = self.model.match_parent_path(matmul_qk, ["Concat", "Transpose", "Reshape", "Split"], [1, 1, 0, 0])
if k_nodes is None:
# This pattern is from pytorch 1.7.1 and transformers 4.6.1
k_nodes = self.model.match_parent_path(
matmul_qk,
["Transpose", "Concat", "Transpose", "Reshape", "Split"],
[1, 0, 1, 0, 0],
)
if k_nodes is None:
logger.debug("fuse_attention: failed to match k path")
return
else:
(_, concat_k, transpose_k, reshape_k, split_k) = k_nodes
else:
(concat_k, transpose_k, reshape_k, split_k) = k_nodes
if split_fc != split_k:
logger.debug("fuse_attention: skip since split_fc != split_k")
return
if concat_k_to_match and concat_k != concat_k_to_match:
logger.debug("fuse_attention: skip since concat_k != concat_k_to_match")
return
attention_mask_input_name = ""
if input_mask_nodes is not None:
input_name = input_mask_nodes[-1].input[0]
attention_mask_input_name = self.cast_attention_mask(input_name)
# Match past and present paths
past = self.match_past_pattern_1(concat_k, concat_v, output_name_to_node) or self.match_past_pattern_2(
concat_k, concat_v, output_name_to_node
)
if past is None:
logger.info("fuse_attention: failed to match past path")
return
if not self.model.find_graph_input(past):
logger.debug("past is not graph input.")
# For GPT2LMHeadModel_BeamSearchStep, there is an extra Gather node to select beam index so it is not graph input.
present = self.match_present(concat_v, input_name_to_nodes)
if present is None:
logger.info("fuse_attention: failed to match present path")
return
if not self.model.find_graph_output(present):
logger.info("expect present to be graph output")
return
self.create_attention_node(
fc_weight,
fc_bias,
gemm_qkv,
past,
present,
layernorm_before_attention.output[0],
reshape_qkv.output[0],
attention_mask_input_name,
is_unidirectional,
)
# we rely on prune_graph() to clean old subgraph nodes:
# qk_nodes + q_nodes + k_nodes + v_nodes + mask_nodes + [reshape_qkv, transpose_qkv, matmul_qkv]
self.prune_graph = True