m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

217 lines
8.2 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import Dict
from fusion_base import Fusion
from fusion_utils import FusionUtils
from onnx import helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionQOrderedMatMul(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "QOrderedMatMul", "MatMul")
def fuse(self, node, input_name_to_nodes: Dict, output_name_to_node: Dict):
matmul_children = self.model.get_children(node, input_name_to_nodes)
# Should only have 1 child - Bias Add
if len(matmul_children) != 1 or matmul_children[0].op_type != "Add":
return
bias_add_node = matmul_children[0]
# Atleast one of the inputs to Bias Add node must be a constant
bias_add_node_index = 0
if (
self.model.get_constant_value(bias_add_node.input[0]) is None
and self.model.get_constant_value(bias_add_node.input[1]) is None
):
return
if self.model.get_constant_value(bias_add_node.input[0]) is None:
bias_add_node_index = 1
bias_add_children = self.model.get_children(bias_add_node, input_name_to_nodes)
if len(bias_add_children) != 1:
return
bias_add_child = bias_add_children[0]
# Bias Add can have another Add downstream (Residual Add layer)
residual_add_node = None
downstream_quantize_node = None
if bias_add_child.op_type == "Add":
residual_add_node = bias_add_child
residual_add_children = self.model.get_children(residual_add_node, input_name_to_nodes)
if len(residual_add_children) != 1 or residual_add_children[0].op_type != "QuantizeLinear":
return
downstream_quantize_node = residual_add_children[0]
elif bias_add_child.op_type == "QuantizeLinear":
downstream_quantize_node = bias_add_child
else:
return
# Make sure the downstream QuantizeLinear has the proper zero points and scales
if not FusionUtils.check_qdq_node_for_fusion(downstream_quantize_node, self.model):
return
# The first input to MatMul should flow through a DequantizeLinear node
first_path_id, first_input_parent_nodes, _ = self.model.match_parent_paths(
node,
[(["DequantizeLinear"], [0])],
output_name_to_node,
)
# If Attention is not fused, this is the pattern to look for
# leading upto the MatMul
reshape_node_0 = None
transpose_node_0 = None
if first_path_id < 0:
first_path_id, first_input_parent_nodes, _ = self.model.match_parent_paths(
node,
[(["Reshape", "Transpose", "DequantizeLinear", "QuantizeLinear"], [0, 0, 0, 0])],
output_name_to_node,
)
if first_path_id < 0:
return
reshape_node_0 = first_input_parent_nodes[0]
transpose_node_0 = first_input_parent_nodes[1]
dequantize_node_0 = first_input_parent_nodes[2]
else:
dequantize_node_0 = first_input_parent_nodes[0]
# Make sure the upstream DequantizeLinear-0 has the proper zero points and scales
if not FusionUtils.check_qdq_node_for_fusion(dequantize_node_0, self.model):
return
# The second input to MatMul should flow through a DequantizeLinear node
dequantize_node_1 = None
is_weight_transpose_required = True
weight_path_id, weight_nodes, _ = self.model.match_parent_paths(
node,
[(["DequantizeLinear", "QuantizeLinear", "Transpose", "DequantizeLinear"], [1, 0, 0, 0])],
output_name_to_node,
)
if weight_path_id < 0:
weight_path_id, weight_nodes, _ = self.model.match_parent_paths(
node,
[(["DequantizeLinear"], [1])],
output_name_to_node,
)
if weight_path_id < 0:
return
dequantize_node_1 = weight_nodes[0]
else:
is_weight_transpose_required = False
dequantize_node_1 = weight_nodes[3]
# Check if weight 'B' is a constant
if self.model.get_constant_value(dequantize_node_1.input[0]) is None:
return
# Make sure the upstream DequantizeLinear-1 has the proper zero points and scales
# Per-channel scales are supported for weights alone
if not FusionUtils.check_qdq_node_for_fusion(dequantize_node_1, self.model, False):
return
# Make sure the upstream flow into the Residual Add node flows through a DQ node
residual_add_dequantize_node = None
if residual_add_node is not None:
residual_path_id, residual_input_parent_nodes, _ = self.model.match_parent_paths(
residual_add_node,
[
(["DequantizeLinear"], [1]),
],
output_name_to_node,
)
if residual_path_id < 0:
return
residual_add_dequantize_node = residual_input_parent_nodes[0]
# Make sure the upstream DequantizeLinear to the Residual Add has the proper zero points and scales
if residual_add_dequantize_node is not None and not FusionUtils.check_qdq_node_for_fusion(
residual_add_dequantize_node, self.model
):
return
# Subgraph nodes to be fused
subgraph_nodes = [node, bias_add_node] # MatMul + Bias Add
if residual_add_node is not None:
subgraph_nodes.extend([residual_add_node]) # Residual Add
subgraph_nodes.extend(weight_nodes)
subgraph_nodes.extend([downstream_quantize_node]) # Downstream Q node
if not self.model.is_safe_to_fuse_nodes(
subgraph_nodes, downstream_quantize_node.output, input_name_to_nodes, output_name_to_node
):
logger.debug(f"It is not safe to fuse QOrderedMatMul node. Skip")
return
# Deal with the case where-in the Attention subgraph is not fused
if transpose_node_0 is not None:
self.model.replace_node_input(transpose_node_0, transpose_node_0.input[0], dequantize_node_0.input[0])
# Make inputs
fused_node_inputs = [
reshape_node_0.output[0] if reshape_node_0 is not None else dequantize_node_0.input[0],
dequantize_node_0.input[1],
dequantize_node_1.input[0],
dequantize_node_1.input[1],
downstream_quantize_node.input[1],
bias_add_node.input[bias_add_node_index],
]
if residual_add_node is not None:
fused_node_inputs.append(residual_add_dequantize_node.input[0])
fused_node_inputs.append(residual_add_dequantize_node.input[1])
# The MatMul weight 'B' and 'bias' need some post-processing
# Transpose weight 'B' from order ROW to order COL
# This offline transpose is needed only while using the CUDA EP
# TODO: Make this fusion logic EP-agnostic ?
if is_weight_transpose_required:
weight_tensor = self.model.get_initializer(dequantize_node_1.input[0])
FusionUtils.transpose_2d_int8_tensor(weight_tensor)
fused_node = helper.make_node(
"QOrderedMatMul",
inputs=fused_node_inputs,
outputs=[downstream_quantize_node.output[0]],
name=self.model.create_node_name("QOrderedMatMul", name_prefix="QOrderedMatMul"),
)
fused_node.attribute.extend([helper.make_attribute("order_A", 1)])
fused_node.attribute.extend([helper.make_attribute("order_B", 0)])
fused_node.attribute.extend([helper.make_attribute("order_Y", 1)])
fused_node.domain = "com.microsoft"
self.nodes_to_remove.extend(subgraph_nodes)
self.nodes_to_add.append(fused_node)
self.node_name_to_graph_name[fused_node.name] = self.this_graph_name