m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

174 lines
6.1 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
import numpy as np
from fusion_base import Fusion
from onnx import TensorProto, helper, numpy_helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionReshape(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "Reshape", "Reshape")
self.prune_graph: bool = False
def replace_reshape_node(self, shape, reshape_node, concat_node):
shape_value = np.asarray(shape, dtype=np.int64)
constant_shape_name = self.model.create_node_name("Constant", "constant_shape")
new_node = helper.make_node(
"Constant",
inputs=[],
outputs=[constant_shape_name],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.INT64,
dims=shape_value.shape,
vals=bytes(shape_value),
raw=True,
),
)
reshape_node.input[1] = constant_shape_name
reshape_node.name = self.model.create_node_name("Reshape", "Reshape_Fuse")
self.nodes_to_remove.extend([concat_node])
self.nodes_to_add.append(new_node)
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
def fuse(self, reshape_node, input_name_to_nodes, output_name_to_node):
if reshape_node.input[1] not in output_name_to_node:
return
concat_node = output_name_to_node[reshape_node.input[1]]
if concat_node.op_type != "Concat" or len(concat_node.input) < 3 or len(concat_node.input) > 4:
return
path0 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Gather", "Shape"],
[0, 0, 0],
output_name_to_node,
)
if path0 is None:
return
(unsqueeze_0, gather_0, shape_0) = path0
path1 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Gather", "Shape"],
[1, 0, 0],
output_name_to_node,
)
if path1 is None:
return
(unsqueeze_1, gather_1, shape_1) = path1
shape = []
gather_value = self.model.get_constant_value(gather_0.input[1])
if gather_value == 0:
shape.append(0)
gather_value = self.model.get_constant_value(gather_1.input[1])
if gather_value == 1:
shape.append(0)
if len(shape) != 2:
return
path2 = []
path3 = []
shape_nodes = [shape_0, shape_1]
if len(concat_node.input) == 3 and self.model.get_initializer(concat_node.input[2]) is None:
path2 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Mul", "Gather", "Shape"],
[2, 0, 0, 0],
output_name_to_node,
)
if path2 is None:
path2 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Mul", "Squeeze", "Slice", "Shape"],
[2, 0, 0, 0, 0],
output_name_to_node,
) # GPT2 exported by PyTorch 1.4 with opset_version=11
if path2 is None:
return
path3 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Mul", "Gather", "Shape"],
[2, 0, 1, 0],
output_name_to_node,
)
if path3 is None:
path3 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Mul", "Squeeze", "Slice", "Shape"],
[2, 0, 1, 0, 0],
output_name_to_node,
) # GPT2 exported by PyTorch 1.4 with opset_version=11
if path3 is None:
return
shape_nodes.extend([path2[-1], path3[-1]])
shape.append(-1)
elif len(concat_node.input) > 2:
concat_value = self.model.get_constant_value(concat_node.input[2])
if concat_value is None:
return
if isinstance(concat_value, np.ndarray):
shape.extend(concat_value.tolist())
else:
shape.append(concat_value)
if len(concat_node.input) == 4 and self.model.get_constant_value(concat_node.input[3]) is None:
if -1 in shape:
return
path2 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Div", "Gather", "Shape"],
[3, 0, 0, 0],
output_name_to_node,
)
if path2 is None:
path2 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Div", "Squeeze", "Slice", "Shape"],
[3, 0, 0, 0, 0],
output_name_to_node,
) # GPT2 exported by PyTorch 1.4 with opset_version=11
if path2 is None:
return
shape_nodes.extend([path2[-1]])
shape.append(-1)
elif len(concat_node.input) > 3:
concat_3 = self.model.get_initializer(concat_node.input[3])
if concat_3 is None:
return
concat_value = numpy_helper.to_array(concat_3)
if isinstance(concat_value, np.ndarray):
shape.extend(concat_value.tolist())
else:
shape.append(concat_value)
root_input = reshape_node.input[0]
same_shape_input = True
for shape_node in shape_nodes:
if shape_node.input[0] != root_input:
same_shape_input = False
if not same_shape_input:
return
self.replace_reshape_node(shape, reshape_node, concat_node)
# TODO(tlwu): Subgraph blocks pruning un-used nodes. Add code to remove un-used nodes safely.
self.prune_graph = True