m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

186 lines
7.5 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from fusion_base import Fusion
from fusion_utils import NumpyHelper
from onnx import helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionSkipLayerNormalization(Fusion):
"""
Fuse Add + LayerNormalization into one node: SkipLayerNormalization
Note: This fusion does not check the input shape of Add and LayerNormalization.
"""
def __init__(self, model: OnnxModel):
super().__init__(model, "SkipLayerNormalization", "LayerNormalization")
# Update shape inference is needed since other fusions might add new edge which does not have shape info yet.
self.shape_infer_helper = self.model.infer_runtime_shape({"batch_size": 4, "seq_len": 7}, update=True)
if self.shape_infer_helper is None:
# TODO(tianleiwu): support subgraph in shape inference or add broadcasting in SkipLayerNormalization op.
logger.warning("symbolic shape inference disabled or failed.")
def fuse(self, node, input_name_to_nodes, output_name_to_node):
add = self.model.get_parent(node, 0, output_name_to_node)
# In some models there is input_ids->gather->add->LayerNorm and one of input of the
# add node is initializer with fixed shape which should not be fused into SkipLayerNorm
if add is None:
return
for add_input in add.input:
if self.model.get_initializer(add_input) != None:
return
# The number of input node of add should be 2
if len(self.model.get_parents(add)) != 2:
return
if self.shape_infer_helper is not None:
if not self.shape_infer_helper.compare_shape(add.input[0], add.input[1]):
logger.debug(
"skip SkipLayerNormalization fusion since shape of inputs (%s, %s) are not same",
add.input[0],
add.input[1],
)
return
else:
logger.debug("skip SkipLayerNormalization fusion since symbolic shape inference failed")
return
gather_path = self.model.match_parent_path(add, ["Gather"], [None])
if gather_path is not None and self.model.find_graph_input(gather_path[0].input[1]) is None:
if self.model.match_parent_path(gather_path[0], ["ConstantOfShape"], [1]) is None:
return
residual_add_has_multiple_consumers = False
add_children = self.model.get_children(add, input_name_to_nodes)
# This means that the residual Add before the LayerNormalization produces an output
# that is consumed by some other nodes other than the LayerNormalization itself
# We can still go ahead with the SkipLayerNormalization fusion but we need to
# preserve the output of Add and that needs to be produced by SkipLayerNormalization.
if len(add_children) != 1:
residual_add_has_multiple_consumers = True
outputs_to_keep = node.output
if residual_add_has_multiple_consumers:
outputs_to_keep.extend([add.output[0]])
outputs = [node.output[0]]
# Skip the other optional outputs of SkipLayerNormalization before adding the Add's output
if residual_add_has_multiple_consumers:
outputs.extend(["", "", add.output[0]])
if (
add is not None
and add.op_type == "Add"
and self.model.is_safe_to_fuse_nodes([add, node], outputs_to_keep, input_name_to_nodes, output_name_to_node)
):
self.nodes_to_remove.extend([add, node])
inputs = [add.input[0], add.input[1], node.input[1], node.input[2]]
normalize_node = helper.make_node(
"SkipLayerNormalization",
inputs=inputs,
outputs=outputs,
name=self.model.create_node_name("SkipLayerNormalization", name_prefix="SkipLayerNorm"),
)
normalize_node.domain = "com.microsoft"
# Pass attribute "epsilon" from layernorm node to SkipLayerNormalization
for att in node.attribute:
if att.name == "epsilon":
normalize_node.attribute.extend([att])
# Set default epsilon if no epsilon exists from layernorm
if len(normalize_node.attribute) == 0:
normalize_node.attribute.extend([helper.make_attribute("epsilon", 1.0e-12)])
self.nodes_to_add.append(normalize_node)
self.node_name_to_graph_name[normalize_node.name] = self.this_graph_name
class FusionBiasSkipLayerNormalization(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "SkipLayerNormalization", "SkipLayerNormalization", "add bias")
def fuse(self, node, input_name_to_nodes, output_name_to_node):
if len(node.input) != 4:
return
return_indice = []
nodes = self.model.match_parent_path(node, ["Add", "MatMul"], [None, None], None, return_indice)
if nodes is None:
# In case of fp16, we could have a Cast between the MatMul and the bias Add
nodes = self.model.match_parent_path(
node, ["Add", "Cast", "MatMul"], [None, None, None], None, return_indice
)
if nodes is None:
return
assert len(return_indice) == 2 or len(return_indice) == 3
add_input_index = return_indice[0]
if add_input_index >= 2:
return
(add, matmul) = nodes
# bias should be one dimension
bias_index = -1
for i, input in enumerate(add.input):
initializer = self.model.get_initializer(input)
if initializer is None:
continue
bias_index = i
bias_weight = NumpyHelper.to_array(initializer)
break
if bias_weight is None:
logger.debug(f"Bias weight not found")
return
if len(bias_weight.shape) != 1:
logger.debug(f"Bias weight is not 1D")
return
subgraph_nodes = [node, add]
if not self.model.is_safe_to_fuse_nodes(subgraph_nodes, node.output, input_name_to_nodes, output_name_to_node):
logger.debug(f"Skip fusing SkipLayerNormalization with Bias since it is not safe")
return
self.nodes_to_remove.extend(subgraph_nodes)
inputs = [
node.input[1 - add_input_index],
matmul.output[0],
node.input[2],
node.input[3],
add.input[bias_index],
]
new_node = helper.make_node(
"SkipLayerNormalization",
inputs=inputs,
outputs=node.output,
name=self.model.create_node_name("SkipLayerNormalization", "SkipLayerNorm_AddBias_"),
)
new_node.domain = "com.microsoft"
# Pass attribute "epsilon" from skiplayernorm node to skiplayernorm(add bias)
for att in node.attribute:
if att.name == "epsilon":
new_node.attribute.extend([att])
# Set default epsilon if no epsilon exists from skiplayernorm
if len(new_node.attribute) == 0:
new_node.attribute.extend([helper.make_attribute("epsilon", 1.0e-12)])
self.nodes_to_add.append(new_node)
self.node_name_to_graph_name[new_node.name] = self.this_graph_name