m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

100 lines
4.1 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import argparse
import logging
import os
import sys
from utils import (
chain_enc_dec_with_beamsearch,
export_summarization_edinit,
export_summarization_enc_dec_past,
onnx_inference,
)
# GLOBAL ENVS
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("generate")
def print_args(args):
for arg in vars(args):
logger.info(f"{arg}: {getattr(args, arg)}")
def user_command():
parent_parser = argparse.ArgumentParser(add_help=False)
parent_parser.add_argument("--max_length", type=int, default=20, help="default to 20")
parent_parser.add_argument("--min_length", type=int, default=0, help="default to 0")
parent_parser.add_argument("-o", "--output", type=str, default="onnx_models", help="default name is onnx_models.")
parent_parser.add_argument("-i", "--input_text", type=str, default=None, help="input text")
parent_parser.add_argument("-s", "--spm_path", type=str, default=None, help="tokenizer model from sentencepice")
parent_parser.add_argument("-v", "--vocab_path", type=str, help="vocab dictionary")
parent_parser.add_argument("-b", "--num_beams", type=int, default=5, help="default to 5")
parent_parser.add_argument("--repetition_penalty", type=float, default=1.0, help="default to 1.0")
parent_parser.add_argument("--no_repeat_ngram_size", type=int, default=3, help="default to 3")
parent_parser.add_argument("--early_stopping", type=bool, default=False, help="default to False")
parent_parser.add_argument("--opset_version", type=int, default=14, help="minimum is 14")
parent_parser.add_argument("--no_encoder", action="store_true")
parent_parser.add_argument("--no_decoder", action="store_true")
parent_parser.add_argument("--no_chain", action="store_true")
parent_parser.add_argument("--no_inference", action="store_true")
required_args = parent_parser.add_argument_group("required input arguments")
required_args.add_argument(
"-m",
"--model_dir",
type=str,
required=True,
help="The directory contains input huggingface model. \
An official model like facebook/bart-base is also acceptable.",
)
print_args(parent_parser.parse_args())
return parent_parser.parse_args()
if __name__ == "__main__":
args = user_command()
if args.opset_version < 14:
raise ValueError(f"The minimum supported opset version is 14! The given one was {args.opset_version}.")
isExist = os.path.exists(args.output)
if not isExist:
os.makedirs(args.output)
# beam search op only supports CPU for now
args.device = "cpu"
logger.info("ENV: CPU ...")
if not args.input_text:
args.input_text = (
"PG&E stated it scheduled the blackouts in response to forecasts for high winds "
"amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
"scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
)
if not args.no_encoder:
logger.info(f"========== EXPORTING ENCODER ==========")
export_summarization_edinit.export_encoder(args)
if not args.no_decoder:
logger.info(f"========== EXPORTING DECODER ==========")
export_summarization_enc_dec_past.export_decoder(args)
if not args.no_chain:
logger.info(f"========== CONVERTING MODELS ==========")
chain_enc_dec_with_beamsearch.convert_model(args)
if not args.no_inference:
logger.info(f"========== INFERENCING WITH ONNX MODEL ==========")
onnx_inference.run_inference(args)