m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

418 lines
15 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
# This script benchmarks gpt2 model with past state.
# For gpt2 model without past state, use benchmark.py to measure performance.
import argparse
import csv
import logging
import os
import sys
from datetime import datetime
import psutil
import torch
from gpt2_helper import DEFAULT_TOLERANCE, MODEL_CLASSES, PRETRAINED_GPT2_MODELS, Gpt2Helper
from packaging import version
from transformers import AutoConfig
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
from benchmark_helper import (
Precision,
create_onnxruntime_session,
get_ort_environment_variables,
prepare_environment,
setup_logger,
)
from quantize_helper import QuantizeHelper
logger = logging.getLogger("")
def parse_arguments(argv=None):
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model_name_or_path",
required=True,
type=str,
help="Model path, or pretrained model name selected in the list: " + ", ".join(PRETRAINED_GPT2_MODELS),
)
parser.add_argument(
"--model_class",
required=False,
type=str,
default="GPT2LMHeadModel",
choices=list(MODEL_CLASSES.keys()),
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--cache_dir",
required=False,
type=str,
default=os.path.join(".", "cache_models"),
help="Directory to cache pre-trained models",
)
parser.add_argument(
"--onnx_dir",
required=False,
type=str,
default=os.path.join(".", "onnx_models"),
help="Directory to store onnx models",
)
parser.add_argument(
"--test_times",
required=False,
default=100,
type=int,
help="Number of repeat times to get average inference latency.",
)
parser.add_argument(
"-v",
"--validate_onnx",
required=False,
action="store_true",
help="Validate ONNX model",
)
parser.add_argument(
"-o",
"--optimize_onnx",
required=False,
action="store_true",
help="Use optimizer.py to optimize onnx model",
)
parser.set_defaults(optimize_onnx=False)
parser.add_argument(
"--stage",
type=int,
default=0,
required=False,
choices=[0, 1, 2],
help="Stage in generation: 1 (initial decoder), 2 (decoder), 0 (both). "
"1 - decode the first token when past_sequence_length is zero; "
"2 - decode the remaining tokens when past_sequence_length is not zero; "
"0 - one onnx model for both stages 1 and 2. "
"Note that we will optimize 1 and 2 differently for best performance.",
)
parser.add_argument("--use_gpu", required=False, action="store_true", help="use GPU for inference")
parser.set_defaults(use_gpu=False)
parser.add_argument(
"-p",
"--precision",
type=Precision,
default=Precision.FLOAT32,
choices=list(Precision),
help="Precision of model to run. fp32 for full precision, fp16 for half precision, and int8 for quantization",
)
parser.add_argument("--torchscript", required=False, action="store_true", help="use Torchscript")
parser.set_defaults(torchscript=False)
parser.add_argument("-b", "--batch_sizes", nargs="+", type=int, default=[1], help="batch size")
parser.add_argument(
"--sequence_lengths",
nargs="+",
type=int,
default=[1],
help="sequence lengths (excluding past)",
)
parser.add_argument(
"-s",
"--past_sequence_lengths",
nargs="+",
type=int,
default=[8, 16, 32, 64, 128, 256],
help="past sequence lengths",
)
parser.add_argument(
"-r",
"--result_csv",
required=False,
default=None,
help="CSV file for saving summary results.",
)
parser.add_argument("--thread_num", required=False, type=int, default=-1, help="Threads to use")
parser.add_argument("--include_copy_output_latency", required=False, action="store_true")
parser.set_defaults(include_copy_output_latency=False)
parser.add_argument("--verbose", required=False, action="store_true")
parser.set_defaults(verbose=False)
parser.add_argument("--output_torch_latency", required=False, action="store_true")
parser.set_defaults(output_torch_latency=False)
parser.add_argument("--disable_io_binding", required=False, action="store_true")
parser.set_defaults(disable_io_binding=False)
args = parser.parse_args(argv)
return args
def main(args):
from transformers import __version__ as transformers_version
if version.parse(transformers_version) < version.parse(
"3.1.0"
): # past_key_values name does not exist in 3.0.2 or older
raise RuntimeError("This tool requires transformers 3.1.0 or later.")
logger.info(f"Arguments:{args}")
if args.precision == Precision.FLOAT16:
assert args.optimize_onnx and args.use_gpu, "fp16 requires --optimize_onnx --use_gpu"
if args.precision == Precision.INT8:
assert not args.use_gpu, "quantization only supports CPU"
if args.stage == 1:
assert args.past_sequence_lengths == [0], "past_sequence_lengths shall be 0 for stage==1 (init decoder)"
torch.set_num_threads(psutil.cpu_count(logical=True) if args.thread_num <= 0 else args.thread_num)
print(torch.__config__.parallel_info())
cache_dir = args.cache_dir
output_dir = args.onnx_dir
prepare_environment(cache_dir, output_dir, args.use_gpu)
model_class = MODEL_CLASSES[args.model_class][0]
gpt2helper = Gpt2Helper
config = AutoConfig.from_pretrained(args.model_name_or_path, torchscript=args.torchscript, cache_dir=cache_dir)
model = model_class.from_pretrained(args.model_name_or_path, config=config, cache_dir=cache_dir)
# This scirpt does not support float16 for PyTorch.
# if args.float16:
# model.half()
device = torch.device("cuda:0" if args.use_gpu else "cpu")
model.to(device)
use_external_data_format = config.n_layer > 24 # TODO: find a way to check model size > 2GB
onnx_model_paths = gpt2helper.get_onnx_paths(
output_dir,
args.model_name_or_path,
args.model_class,
has_past=True,
new_folder=use_external_data_format,
)
onnx_model_path = onnx_model_paths["raw"]
use_padding = MODEL_CLASSES[args.model_class][2]
gpt2helper.export_onnx(
model,
device,
onnx_model_path,
args.verbose,
use_external_data_format,
has_position_ids=use_padding,
has_attention_mask=use_padding,
)
if args.optimize_onnx or args.precision != Precision.FLOAT32:
onnx_model_path = onnx_model_paths[str(args.precision) if args.precision != Precision.INT8 else "fp32"]
gpt2helper.optimize_onnx(
onnx_model_paths["raw"],
onnx_model_path,
args.precision == Precision.FLOAT16,
model.config.num_attention_heads,
model.config.hidden_size,
use_external_data_format,
auto_mixed_precision=True,
stage=args.stage,
)
if args.precision == Precision.INT8:
logger.info("quantizing model...")
QuantizeHelper.quantize_onnx_model(onnx_model_path, onnx_model_paths["int8"], use_external_data_format)
model = QuantizeHelper.quantize_torch_model(model)
logger.info("finished quantizing model")
onnx_model_path = onnx_model_paths["int8"]
if args.torchscript:
model = gpt2helper.torchscript(
model,
config,
device,
has_position_ids=use_padding,
has_attention_mask=use_padding,
)
session = create_onnxruntime_session(
onnx_model_path,
args.use_gpu,
enable_all_optimization=False,
num_threads=args.thread_num,
verbose=args.verbose,
)
if session is None:
return
# Allocate output buffers for IO Binding
max_output_shapes = gpt2helper.get_output_shapes(
max(args.batch_sizes),
max(args.past_sequence_lengths),
max(args.sequence_lengths),
config,
args.model_class,
)
output_buffers = gpt2helper.get_output_buffers(max_output_shapes, device, args.precision == Precision.FLOAT16)
csv_filename = args.result_csv or "benchmark_result_{}.csv".format(datetime.now().strftime("%Y%m%d-%H%M%S"))
with open(csv_filename, mode="a", newline="") as csv_file:
column_names = [
"model_name",
"model_class",
"stage",
"environment_variables",
"gpu",
"precision",
"optimizer",
"torchscript",
"batch_size",
"sequence_length",
"past_sequence_length",
"disable_io_binding",
"torch_latency",
"onnxruntime_latency",
]
csv_writer = csv.DictWriter(csv_file, fieldnames=column_names)
csv_writer.writeheader()
for batch_size in args.batch_sizes:
for sequence_length in args.sequence_lengths:
for past_sequence_length in args.past_sequence_lengths:
assert batch_size > 0 and sequence_length > 0 and past_sequence_length >= 0
logger.debug(
"Running test for batch_size=%d sequence_length=%d past_sequence_length=%d ...",
batch_size,
sequence_length,
past_sequence_length,
)
dummy_inputs = gpt2helper.get_dummy_inputs(
batch_size,
past_sequence_length,
sequence_length,
config.num_attention_heads,
config.hidden_size,
config.n_layer,
config.vocab_size,
device,
float16=(args.precision == Precision.FLOAT16),
has_position_ids=use_padding,
has_attention_mask=use_padding,
)
output_shapes = gpt2helper.get_output_shapes(
batch_size,
past_sequence_length,
sequence_length,
config,
args.model_class,
)
try:
if args.validate_onnx or args.output_torch_latency:
outputs, torch_latency = gpt2helper.pytorch_inference(model, dummy_inputs, args.test_times)
# Dump Torch output shape
for i, value in enumerate(outputs):
if isinstance(value, tuple):
logger.debug(
f"torch output {i} is tuple of size {len(value)}, shape {value[0].shape}"
)
else:
logger.debug(f"torch output {i} shape {value.shape}")
else:
outputs = None
torch_latency = None
if args.disable_io_binding:
ort_outputs, ort_latency = gpt2helper.onnxruntime_inference(
session, dummy_inputs, args.test_times
)
else:
ort_outputs, ort_latency = gpt2helper.onnxruntime_inference_with_binded_io(
session,
dummy_inputs,
output_buffers,
output_shapes,
args.test_times,
return_numpy=False,
include_copy_output_latency=args.include_copy_output_latency,
)
if args.validate_onnx:
copy_outputs = ort_outputs
if not args.disable_io_binding:
# Results of IO binding might be in GPU. Copy outputs to CPU for comparison.
copy_outputs = []
for output in ort_outputs:
copy_outputs.append(output.cpu().numpy())
if gpt2helper.compare_outputs(
outputs,
copy_outputs,
model_class=args.model_class,
rtol=DEFAULT_TOLERANCE[args.precision],
atol=DEFAULT_TOLERANCE[args.precision],
):
logger.info(
f"Pytorch and ONNX Runtime outputs are all close (tolerance={DEFAULT_TOLERANCE[args.precision]})."
)
logger.info(
"batch_size=%d, sequence_length=%d, past_sequence_length=%d, onnxruntime_latency=%.2f %s %s",
batch_size,
sequence_length,
past_sequence_length,
ort_latency,
"(disable_io_binding)" if args.disable_io_binding else "",
", torch_latency={torch_latency}" if torch_latency else "",
)
row = {
"model_name": args.model_name_or_path,
"model_class": args.model_class,
"stage": args.stage,
"environment_variables": get_ort_environment_variables(),
"gpu": args.use_gpu,
"precision": args.precision,
"optimizer": args.optimize_onnx,
"torchscript": args.torchscript,
"batch_size": batch_size,
"sequence_length": sequence_length,
"past_sequence_length": past_sequence_length,
"disable_io_binding": args.disable_io_binding,
"torch_latency": f"{torch_latency:.2f}" if torch_latency else "None",
"onnxruntime_latency": f"{ort_latency:.2f}",
}
csv_writer.writerow(row)
except:
logger.error(f"Exception", exc_info=True)
return None
logger.info(f"Results are saved to file {csv_filename}")
return csv_filename
if __name__ == "__main__":
args = parse_arguments()
setup_logger(args.verbose)
main(args)