m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

691 lines
23 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import logging
import os
import sys
from pathlib import Path
import numpy
import torch
from affinity_helper import AffinitySetting
from benchmark_helper import OptimizerInfo, Precision, create_onnxruntime_session
from huggingface_models import MODEL_CLASSES
from quantize_helper import QuantizeHelper
from torch_onnx_export_helper import torch_onnx_export
from transformers import AutoConfig, AutoTokenizer, LxmertConfig, TransfoXLConfig
sys.path.append(os.path.join(os.path.dirname(__file__), "models", "gpt2"))
from gpt2_helper import PRETRAINED_GPT2_MODELS, GPT2ModelNoPastState, TFGPT2ModelNoPastState
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
logger = logging.getLogger(__name__)
# Workaround by replacing torch.triu using self-defined op
# Since torch.triu cannot be exported to ONNX. See https://github.com/pytorch/pytorch/issues/32968
torch_func = {"triu": torch.triu}
def triu_onnx(x, diagonal=0, out=None):
assert out is None
assert len(x.shape) == 2 and x.size(0) == x.size(1)
torch_triu = torch_func["triu"]
template = torch_triu(torch.ones((1024, 1024), dtype=torch.uint8), diagonal)
mask = template[: x.size(0), : x.size(1)]
return torch.where(mask.bool(), x, torch.zeros_like(x))
def replace_torch_functions():
torch.triu = triu_onnx
def restore_torch_functions():
torch.triu = torch_func["triu"]
def create_onnxruntime_input(vocab_size, batch_size, sequence_length, input_names, config, data_type=numpy.int64):
input_ids = numpy.random.randint(low=0, high=vocab_size - 1, size=(batch_size, sequence_length), dtype=data_type)
inputs = {"input_ids": input_ids}
if "attention_mask" in input_names:
attention_mask = numpy.ones([batch_size, sequence_length], dtype=data_type)
inputs["attention_mask"] = attention_mask
if "token_type_ids" in input_names:
segment_ids = numpy.zeros([batch_size, sequence_length], dtype=data_type)
inputs["token_type_ids"] = segment_ids
if config.is_encoder_decoder:
inputs["decoder_input_ids"] = input_ids
if isinstance(config, LxmertConfig):
inputs["visual_feats"] = numpy.random.randn(1, 1, config.visual_feat_dim).astype(numpy.float32)
inputs["visual_pos"] = numpy.random.randn(1, 1, config.visual_pos_dim).astype(numpy.float32)
if isinstance(config, TransfoXLConfig):
inputs["tf_transfo_xl_model/transformer/pos_emb/einsum/Einsum/inputs_1:0"] = numpy.zeros(
[config.hidden_size], dtype=numpy.float32
)
return inputs
def filter_inputs(inputs, input_names):
remaining_model_inputs = {}
for input_name in input_names:
if input_name in inputs:
remaining_model_inputs[input_name] = inputs[input_name]
return remaining_model_inputs
def flatten(inputs):
return [[flatten(i) for i in inputs] if isinstance(inputs, (list, tuple)) else inputs]
def update_flatten_list(inputs, res_list):
for i in inputs:
res_list.append(i) if not isinstance(i, (list, tuple)) else update_flatten_list(i, res_list)
return res_list
def build_dynamic_axes(example_inputs, outputs_flatten):
sequence_length = example_inputs["input_ids"].shape[-1]
dynamic_axes = {key: {0: "batch_size", 1: "seq_len"} for key in example_inputs.keys()}
output_names = ["output_" + str(i + 1) for i in range(len(outputs_flatten))]
for i, output_name in enumerate(output_names):
dynamic_axes[output_name] = {0: "batch_size"}
dims = outputs_flatten[i].shape
for j, dim in enumerate(dims):
if dim == sequence_length:
dynamic_axes[output_name].update({j: "seq_len"})
return dynamic_axes, output_names
def validate_onnx_model(
onnx_model_path,
example_inputs,
example_outputs_flatten,
use_gpu,
fp16,
output_names=None,
):
test_session = create_onnxruntime_session(onnx_model_path, use_gpu, enable_all_optimization=False)
if test_session is None:
logger.error(f"{onnx_model_path} is an invalid ONNX model")
return False
logger.info(f"{onnx_model_path} is a valid ONNX model")
# Compare the inference result with PyTorch or Tensorflow
example_ort_inputs = {k: t.numpy() for k, t in example_inputs.items()}
example_ort_outputs = test_session.run(output_names, example_ort_inputs)
if len(example_outputs_flatten) != len(example_ort_outputs):
logger.error(
f"Number of output tensors expected {len(example_outputs_flatten)}, got {len(example_ort_outputs)}"
)
return False
for i in range(len(example_outputs_flatten)):
abs_diff = numpy.amax(numpy.abs(example_ort_outputs[i] - example_outputs_flatten[i].cpu().numpy()))
if abs_diff > 1e-4:
logger.info(f"Max absolute diff={abs_diff} for output tensor {i}")
rtol = 5e-02 if fp16 else 1e-4
atol = 1e-01 if fp16 else 1e-4
if not numpy.allclose(
example_ort_outputs[i],
example_outputs_flatten[i].cpu().numpy(),
rtol=rtol,
atol=atol,
):
logger.error(f"Output tensor {i} is not close: rtol={rtol}, atol={atol}")
return False
logger.info(f"inference result of onnxruntime is validated on {onnx_model_path}")
return True
def get_onnx_file_path(
onnx_dir: str,
model_name: str,
input_count: int,
optimized_by_script: bool,
use_gpu: bool,
precision: Precision,
optimized_by_onnxruntime: bool,
use_external_data: bool,
):
from re import sub
normalized_model_name = sub(r"[^a-zA-Z0-9_]", "_", model_name)
if not optimized_by_script:
filename = f"{normalized_model_name}_{input_count}"
else:
device = "gpu" if use_gpu else "cpu"
filename = f"{normalized_model_name}_{input_count}_{precision}_{device}"
if optimized_by_onnxruntime:
filename += f"_ort"
directory = onnx_dir
# ONNXRuntime will not write external data so the raw and optimized models shall be in same directory.
if use_external_data and not optimized_by_onnxruntime:
directory = os.path.join(onnx_dir, filename)
if not os.path.exists(directory):
os.makedirs(directory)
return os.path.join(directory, f"{filename}.onnx")
def add_filename_suffix(file_path: str, suffix: str) -> str:
"""
Append a suffix at the filename (before the extension).
Args:
path: pathlib.Path The actual path object we would like to add a suffix
suffix: The suffix to add
Returns: path with suffix appended at the end of the filename and before extension
"""
path = Path(file_path)
return str(path.parent.joinpath(path.stem + suffix).with_suffix(path.suffix))
def optimize_onnx_model_by_ort(onnx_model_path, ort_model_path, use_gpu, overwrite, model_fusion_statistics):
if overwrite or not os.path.exists(ort_model_path):
Path(ort_model_path).parent.mkdir(parents=True, exist_ok=True)
from optimizer import get_fusion_statistics, optimize_by_onnxruntime
# Use onnxruntime to optimize model, which will be saved to *_ort.onnx
_ = optimize_by_onnxruntime(
onnx_model_path,
use_gpu=use_gpu,
optimized_model_path=ort_model_path,
opt_level=99,
)
model_fusion_statistics[ort_model_path] = get_fusion_statistics(ort_model_path)
else:
logger.info(f"Skip optimization since model existed: {ort_model_path}")
def optimize_onnx_model(
onnx_model_path,
optimized_model_path,
model_type,
num_attention_heads,
hidden_size,
use_gpu,
precision,
use_raw_attention_mask,
overwrite,
model_fusion_statistics,
use_external_data_format,
optimization_options=None,
):
if overwrite or not os.path.exists(optimized_model_path):
Path(optimized_model_path).parent.mkdir(parents=True, exist_ok=True)
from fusion_options import FusionOptions
from optimizer import optimize_model
if optimization_options is None:
optimization_options = FusionOptions(model_type)
optimization_options.use_raw_attention_mask(use_raw_attention_mask)
if Precision.FLOAT16 == precision:
optimization_options.enable_gelu_approximation = True
if Precision.INT8 == precision:
optimization_options.enable_embed_layer_norm = False
# Use script to optimize model.
# Use opt_level <= 1 for models to be converted to fp16, because some fused op (like FusedGemm) has only fp32 and no fp16.
# It is better to be conservative so we use opt_level=0 here, in case MemcpyFromHost is added to the graph by OnnxRuntime.
opt_model = optimize_model(
onnx_model_path,
model_type,
num_heads=num_attention_heads,
hidden_size=hidden_size,
opt_level=0,
optimization_options=optimization_options,
use_gpu=use_gpu,
only_onnxruntime=False,
)
if model_type == "bert_keras" or model_type == "bert_tf":
opt_model.use_dynamic_axes()
model_fusion_statistics[optimized_model_path] = opt_model.get_fused_operator_statistics()
if Precision.FLOAT16 == precision:
opt_model.convert_float_to_float16(keep_io_types=True)
opt_model.save_model_to_file(optimized_model_path, use_external_data_format)
else:
logger.info(f"Skip optimization since model existed: {optimized_model_path}")
def modelclass_dispatcher(model_name, custom_model_class):
if custom_model_class != None:
if custom_model_class in MODEL_CLASSES:
return custom_model_class
else:
raise Exception("Valid model class: " + " ".join(MODEL_CLASSES))
if model_name in PRETRAINED_GPT2_MODELS:
return "GPT2ModelNoPastState"
import re
if re.search("-squad$", model_name) != None:
return "AutoModelForQuestionAnswering"
elif re.search("-mprc$", model_name) != None:
return "AutoModelForSequenceClassification"
elif re.search("gpt2", model_name) != None:
return "AutoModelWithLMHead"
return "AutoModel"
def load_pretrained_model(model_name, config, cache_dir, custom_model_class, is_tf_model=False):
model_class_name = modelclass_dispatcher(model_name, custom_model_class)
if model_class_name == "GPT2ModelNoPastState":
if is_tf_model:
return TFGPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir)
else:
return GPT2ModelNoPastState.from_pretrained(model_name, config=config, cache_dir=cache_dir)
if is_tf_model:
model_class_name = "TF" + model_class_name
transformers_module = __import__("transformers", fromlist=[model_class_name])
logger.info(f"Model class name: {model_class_name}")
model_class = getattr(transformers_module, model_class_name)
return model_class.from_pretrained(model_name, config=config, cache_dir=cache_dir)
def load_pt_model(model_name, model_class, cache_dir, config_modifier):
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
if hasattr(config, "return_dict"):
config.return_dict = False
config_modifier.modify(config)
model = load_pretrained_model(model_name, config=config, cache_dir=cache_dir, custom_model_class=model_class)
return config, model
def load_tf_model(model_name, model_class, cache_dir, config_modifier):
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
config_modifier.modify(config)
# Loading tf model from transformers limits the cpu affinity to {0} when KMP_AFFINITY is set
# Restore the affinity after model loading for expected ORT performance
affinity_setting = AffinitySetting()
affinity_setting.get_affinity()
model = load_pretrained_model(
model_name,
config=config,
cache_dir=cache_dir,
custom_model_class=model_class,
is_tf_model=True,
)
affinity_setting.set_affinity()
return config, model
# For test only
def load_pt_model_from_tf(model_name):
# Note that we could get pt model from tf, but model source and its structure in this case is different from directly using
# load_pt_model() and load_tf_model() even with the same name. Therefore it should not be used for comparing with them
from convert_tf_models_to_pytorch import tf2pt_pipeline
config, model = tf2pt_pipeline(model_name)
return config, model
def validate_and_optimize_onnx(
model_name,
use_external_data_format,
model_type,
onnx_dir,
input_names,
use_gpu,
precision,
optimize_info,
validate_onnx,
use_raw_attention_mask,
overwrite,
config,
model_fusion_statistics,
onnx_model_path,
example_inputs,
example_outputs_flatten,
output_names,
fusion_options,
):
is_valid_onnx_model = True
if validate_onnx:
is_valid_onnx_model = validate_onnx_model(
onnx_model_path,
example_inputs,
example_outputs_flatten,
use_gpu,
False,
output_names,
)
if optimize_info == OptimizerInfo.NOOPT:
return onnx_model_path, is_valid_onnx_model, config.vocab_size
if (
optimize_info == OptimizerInfo.BYSCRIPT or precision == Precision.FLOAT16 or precision == Precision.INT8
): # Use script (optimizer.py) to optimize
optimized_model_path = get_onnx_file_path(
onnx_dir,
model_name,
len(input_names),
True,
use_gpu,
precision,
False,
use_external_data_format,
)
optimize_onnx_model(
onnx_model_path,
optimized_model_path,
model_type,
config.num_attention_heads,
config.hidden_size,
use_gpu,
precision,
use_raw_attention_mask,
overwrite,
model_fusion_statistics,
use_external_data_format,
fusion_options,
)
onnx_model_path = optimized_model_path
if validate_onnx:
is_valid_onnx_model = validate_onnx_model(
onnx_model_path,
example_inputs,
example_outputs_flatten,
use_gpu,
precision == Precision.FLOAT16,
output_names,
)
if precision == Precision.INT8:
logger.info(f"Quantizing model: {onnx_model_path}")
QuantizeHelper.quantize_onnx_model(onnx_model_path, onnx_model_path, use_external_data_format)
logger.info(f"Finished quantizing model: {onnx_model_path}")
if optimize_info == OptimizerInfo.BYORT: # Use OnnxRuntime to optimize
if is_valid_onnx_model:
ort_model_path = add_filename_suffix(onnx_model_path, "_ort")
optimize_onnx_model_by_ort(
onnx_model_path,
ort_model_path,
use_gpu,
overwrite,
model_fusion_statistics,
)
return onnx_model_path, is_valid_onnx_model, config.vocab_size
def export_onnx_model_from_pt(
model_name,
opset_version,
use_external_data_format,
model_type,
model_class,
config_modifier,
cache_dir,
onnx_dir,
input_names,
use_gpu,
precision,
optimizer_info,
validate_onnx,
use_raw_attention_mask,
overwrite,
model_fusion_statistics,
fusion_options,
):
config, model = load_pt_model(model_name, model_class, cache_dir, config_modifier)
# config, model = load_pt_model_from_tf(model_name)
model.cpu()
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
max_input_size = (
tokenizer.max_model_input_sizes[model_name] if model_name in tokenizer.max_model_input_sizes else 1024
)
example_inputs = tokenizer.encode_plus("This is a sample input", return_tensors="pt")
example_inputs = filter_inputs(example_inputs, input_names)
example_outputs = model(**example_inputs)
assert isinstance(example_outputs, (list, tuple)), f"type of output is not list or tuple: {type(example_outputs)}"
# Flatten is needed for gpt2 and distilgpt2.
example_outputs_flatten = flatten(example_outputs)
example_outputs_flatten = update_flatten_list(example_outputs_flatten, [])
onnx_model_path = get_onnx_file_path(
onnx_dir,
model_name,
len(input_names),
False,
use_gpu,
precision,
False,
use_external_data_format,
)
if overwrite or not os.path.exists(onnx_model_path):
logger.info("Exporting ONNX model to {}".format(onnx_model_path))
Path(onnx_model_path).parent.mkdir(parents=True, exist_ok=True)
dynamic_axes, output_names = build_dynamic_axes(example_inputs, example_outputs_flatten)
replace_torch_functions()
torch_onnx_export(
model=model,
args=tuple(example_inputs.values()),
f=onnx_model_path,
input_names=list(example_inputs.keys()),
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
opset_version=opset_version,
use_external_data_format=use_external_data_format,
)
restore_torch_functions()
else:
logger.info(f"Skip export since model existed: {onnx_model_path}")
onnx_model_file, is_valid_onnx_model, vocab_size = validate_and_optimize_onnx(
model_name,
use_external_data_format,
model_type,
onnx_dir,
input_names,
use_gpu,
precision,
optimizer_info,
validate_onnx,
use_raw_attention_mask,
overwrite,
config,
model_fusion_statistics,
onnx_model_path,
example_inputs,
example_outputs_flatten,
None,
fusion_options,
)
return onnx_model_file, is_valid_onnx_model, vocab_size, max_input_size
def export_onnx_model_from_tf(
model_name,
opset_version,
use_external_data_format,
model_type,
model_class,
config_modifier,
cache_dir,
onnx_dir,
input_names,
use_gpu,
precision,
optimizer_info,
validate_onnx,
use_raw_attention_mask,
overwrite,
model_fusion_statistics,
fusion_options,
):
# Use CPU to export
import tensorflow as tf
tf.config.set_visible_devices([], "GPU")
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
# Fix "Using pad_token, but it is not set yet" error.
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
max_input_size = (
tokenizer.max_model_input_sizes[model_name] if model_name in tokenizer.max_model_input_sizes else 1024
)
config, model = load_tf_model(model_name, model_class, cache_dir, config_modifier)
model.resize_token_embeddings(len(tokenizer))
example_inputs = tokenizer.encode_plus(
"This is a sample input",
return_tensors="tf",
max_length=max_input_size,
padding="max_length",
truncation=True,
)
example_inputs = filter_inputs(example_inputs, input_names)
if config.is_encoder_decoder:
example_inputs["decoder_input_ids"] = tokenizer.encode_plus(
"This is a sample input",
return_tensors="tf",
max_length=max_input_size,
padding="max_length",
truncation=True,
).input_ids
if model_name == "unc-nlp/lxmert-base-uncased":
example_inputs["visual_feats"] = tf.random.normal([1, 1, config.visual_feat_dim])
example_inputs["visual_pos"] = tf.random.normal([1, 1, config.visual_pos_dim])
try:
# Use no past state for these models
if config.use_cache:
config.use_cache = False
except:
pass
example_outputs = model(example_inputs, training=False)
output_names = None
# For xlnet models, only compare the last_hidden_state output.
if model_name == "xlnet-base-cased" or model_name == "xlnet-large-cased":
output_names = ["last_hidden_state"]
example_outputs = example_outputs["last_hidden_state"]
# Flatten is needed for gpt2 and distilgpt2. Output name sorting is needed for tf2onnx outputs to match onnx outputs.
from tensorflow.python.util import nest
example_outputs_flatten = nest.flatten(example_outputs)
onnx_model_path = get_onnx_file_path(
onnx_dir,
model_name,
len(input_names),
False,
use_gpu,
precision,
False,
use_external_data_format,
)
tf_internal_model_path = onnx_model_path[:-5] if use_external_data_format else onnx_model_path
if overwrite or not os.path.exists(tf_internal_model_path):
logger.info("Exporting ONNX model to {}".format(onnx_model_path))
if not use_external_data_format:
Path(tf_internal_model_path).parent.mkdir(parents=True, exist_ok=True)
import zipfile
import tf2onnx
tf2onnx.logging.set_level(tf2onnx.logging.ERROR)
specs = []
for name, value in example_inputs.items():
dims = [None] * len(value.shape)
specs.append(tf.TensorSpec(tuple(dims), value.dtype, name=name))
_, _ = tf2onnx.convert.from_keras(
model,
input_signature=tuple(specs),
opset=opset_version,
large_model=use_external_data_format,
output_path=tf_internal_model_path,
)
if use_external_data_format:
# need to unpack the zip for run_onnxruntime()
with zipfile.ZipFile(tf_internal_model_path, "r") as z:
z.extractall(os.path.dirname(tf_internal_model_path))
tf_internal_model_path = os.path.join(os.path.dirname(tf_internal_model_path), "__MODEL_PROTO.onnx")
if os.path.exists(onnx_model_path):
os.remove(onnx_model_path)
os.rename(tf_internal_model_path, onnx_model_path)
else:
logger.info(f"Skip export since model existed: {onnx_model_path}")
model_type = model_type + "_tf"
optimized_onnx_path, is_valid_onnx_model, vocab_size = validate_and_optimize_onnx(
model_name,
use_external_data_format,
model_type,
onnx_dir,
input_names,
use_gpu,
precision,
optimizer_info,
validate_onnx,
use_raw_attention_mask,
overwrite,
config,
model_fusion_statistics,
onnx_model_path,
example_inputs,
example_outputs_flatten,
output_names,
fusion_options,
)
return (
optimized_onnx_path,
is_valid_onnx_model,
vocab_size,
max_input_size,
)