m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1105 lines
44 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
import logging
import os
import sys
from collections import deque
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from float16 import convert_float_to_float16
from onnx import AttributeProto, GraphProto, ModelProto, NodeProto, TensorProto, helper, numpy_helper, save_model
from shape_infer_helper import SymbolicShapeInferenceHelper
logger = logging.getLogger(__name__)
class OnnxModel:
def __init__(self, model):
self.initialize(model)
def initialize(self, model):
self.model: ModelProto = model
self._node_name_suffix: Dict[str, int] = {} # key is node name prefix, value is the last suffix generated
self.shape_infer_helper: SymbolicShapeInferenceHelper = None
self.enable_shape_infer: bool = True
self.all_graphs: Optional[List[GraphProto]] = None
def disable_shape_inference(self):
self.enable_shape_infer = False
def infer_runtime_shape(self, dynamic_axis_mapping={}, update=False):
if self.enable_shape_infer:
if self.shape_infer_helper is None or update:
self.shape_infer_helper = SymbolicShapeInferenceHelper(self.model)
try:
if self.shape_infer_helper.infer(dynamic_axis_mapping):
return self.shape_infer_helper
except: # noqa
self.enable_shape_infer = False # disable shape inference to suppress same error message.
print("failed in shape inference", sys.exc_info()[0])
return None
def input_name_to_nodes(self):
input_name_to_nodes = {}
for node in self.nodes():
for input_name in node.input:
if input_name not in input_name_to_nodes:
input_name_to_nodes[input_name] = [node]
else:
input_name_to_nodes[input_name].append(node)
return input_name_to_nodes
def output_name_to_node(self):
output_name_to_node = {}
for node in self.nodes():
for output_name in node.output:
output_name_to_node[output_name] = node
return output_name_to_node
def nodes(self):
all_nodes = []
for graph in self.graphs():
for node in graph.node:
all_nodes.append(node)
return all_nodes
def graph(self):
return self.model.graph
def graphs(self):
if self.all_graphs is not None:
return self.all_graphs
self.all_graphs = []
graph_queue = [self.model.graph]
while graph_queue:
graph = graph_queue.pop(0)
self.all_graphs.append(graph)
for node in graph.node:
for attr in node.attribute:
if attr.type == AttributeProto.AttributeType.GRAPH:
assert isinstance(attr.g, GraphProto)
graph_queue.append(attr.g)
if attr.type == AttributeProto.AttributeType.GRAPHS:
for g in attr.graphs:
assert isinstance(g, GraphProto)
graph_queue.append(g)
return self.all_graphs
def get_graphs_input_names(self):
input_names = []
for graph in self.graphs():
for input in graph.input:
input_names.append(input.name)
return input_names
def get_graphs_output_names(self):
output_names = []
for graph in self.graphs():
for output in graph.output:
output_names.append(output.name)
return output_names
def get_graph_by_node(self, node):
for graph in self.graphs():
if node in graph.node:
return graph
return None
def get_graph_by_name(self, graph_name):
for graph in self.graphs():
if graph_name == graph.name:
return graph
return None
def get_topological_insert_id(self, graph, outputs):
for idx, node in enumerate(graph.node):
for input in node.input:
if input in outputs:
return idx
return len(graph.node)
def remove_node(self, node):
for graph in self.graphs():
if node in graph.node:
graph.node.remove(node)
return
logger.warning("Failed to remove node %s", node) # It might be a bug to hit this line.
def remove_nodes(self, nodes_to_remove):
for node in nodes_to_remove:
self.remove_node(node)
def add_node(self, node, graph_name=None):
if graph_name is None or graph_name == self.model.graph.name:
self.model.graph.node.extend([node])
else:
graph = self.get_graph_by_name(graph_name)
insert_idx = self.get_topological_insert_id(graph, node.output)
graph.node.insert(insert_idx, node)
def add_nodes(self, nodes_to_add, node_name_to_graph_name=None):
if node_name_to_graph_name is None:
self.model.graph.node.extend(nodes_to_add)
else:
for node in nodes_to_add:
graph_name = node_name_to_graph_name[node.name]
self.add_node(node, graph_name)
def add_initializer(self, tensor, graph_name=None):
if graph_name is None or graph_name == self.model.graph.name:
self.model.graph.initializer.extend([tensor])
else:
graph = self.get_graph_by_name(graph_name)
graph.initializer.extend([tensor])
def add_input(self, input, graph_name=None):
if graph_name is None or graph_name == self.model.graph.name:
self.model.graph.input.extend([input])
else:
graph = self.get_graph_by_name(graph_name)
graph.input.extend([input])
@staticmethod
def replace_node_input(node, old_input_name, new_input_name):
assert isinstance(old_input_name, str) and isinstance(new_input_name, str)
for j in range(len(node.input)):
if node.input[j] == old_input_name:
node.input[j] = new_input_name
def replace_input_of_all_nodes(self, old_input_name, new_input_name):
for node in self.model.graph.node:
OnnxModel.replace_node_input(node, old_input_name, new_input_name)
@staticmethod
def replace_node_output(node, old_output_name, new_output_name):
assert isinstance(old_output_name, str) and isinstance(new_output_name, str)
for j in range(len(node.output)):
if node.output[j] == old_output_name:
node.output[j] = new_output_name
def replace_output_of_all_nodes(self, old_output_name, new_output_name):
# This function shall be used carefully. For example:
# Add --[old_name]--> Cast ---> [new_name]
# |
# +----[old_name]--> Transpose -->
# If we want to remove the Cast node: replace output of Add to new_name is not enough;
# The input of Transpose shall also be updated to new_name.
for node in self.model.graph.node:
OnnxModel.replace_node_output(node, old_output_name, new_output_name)
def get_initializer(self, name):
for graph in self.graphs():
for tensor in graph.initializer:
if tensor.name == name:
return tensor
return None
def get_nodes_by_op_type(self, op_type):
nodes = []
for node in self.nodes():
if node.op_type == op_type:
nodes.append(node)
return nodes
def get_children(self, node, input_name_to_nodes=None):
if input_name_to_nodes is None:
input_name_to_nodes = self.input_name_to_nodes()
children = []
for output in node.output:
if output in input_name_to_nodes:
for node in input_name_to_nodes[output]:
children.append(node)
return children
def get_parents(self, node, output_name_to_node=None):
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
parents = []
for input in node.input:
if input in output_name_to_node:
parents.append(output_name_to_node[input])
return parents
def get_parent(self, node, i, output_name_to_node=None):
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
if len(node.input) <= i:
return None
input = node.input[i]
if input not in output_name_to_node:
return None
return output_name_to_node[input]
def match_first_parent(self, node, parent_op_type, output_name_to_node, exclude=[]):
"""
Find parent node based on constraints on op_type.
Args:
node (str): current node name.
parent_op_type (str): constraint of parent node op_type.
output_name_to_node (dict): dictionary with output name as key, and node as value.
exclude (list): list of nodes that are excluded (not allowed to match as parent).
Returns:
parent: The matched parent node. None if not found.
index: The input index of matched parent node. None if not found.
"""
for i, input in enumerate(node.input):
if input in output_name_to_node:
parent = output_name_to_node[input]
if parent.op_type == parent_op_type and parent not in exclude:
return parent, i
else:
logger.debug(f"To find first {parent_op_type}, current {parent.op_type}")
return None, None
def match_parent(
self,
node,
parent_op_type,
input_index=None,
output_name_to_node=None,
exclude=[],
return_indice=None,
):
"""
Find parent node based on constraints on op_type and index.
When input_index is None, we will find the first parent node based on constraints,
and return_indice will be appended the corresponding input index.
Args:
node (str): current node name.
parent_op_type (str): constraint of parent node op_type.
input_index (int or None): only check the parent given input index of current node.
output_name_to_node (dict): dictionary with output name as key, and node as value.
exclude (list): list of nodes that are excluded (not allowed to match as parent).
return_indice (list): a list to append the input index when input_index is None.
Returns:
parent: The matched parent node.
"""
assert node is not None
assert input_index is None or input_index >= 0
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
if input_index is None:
parent, index = self.match_first_parent(node, parent_op_type, output_name_to_node, exclude)
if return_indice is not None:
return_indice.append(index)
return parent
if input_index >= len(node.input):
logger.debug(f"input_index {input_index} >= node inputs {len(node.input)}")
return None
parent = self.get_parent(node, input_index, output_name_to_node)
if parent is not None and parent.op_type == parent_op_type and parent not in exclude:
return parent
if parent is not None:
logger.debug(f"Expect {parent_op_type}, Got {parent.op_type}")
return None
def match_parent_paths(self, node, paths, output_name_to_node):
for i, path in enumerate(paths):
assert isinstance(path, List) or isinstance(path, Tuple)
return_indice = []
matched = self.match_parent_path(node, path[0], path[1], output_name_to_node, return_indice)
if matched:
return i, matched, return_indice
return -1, None, None
def match_parent_path(
self,
node,
parent_op_types,
parent_input_index=None,
output_name_to_node=None,
return_indice=None,
):
"""
Find a sequence of input edges based on constraints on parent op_type and index.
When input_index is None, we will find the first parent node based on constraints,
and return_indice will be appended the corresponding input index.
Args:
node (str): current node name.
parent_op_types (str): constraint of parent node op_type of each input edge.
parent_input_index (list): constraint of input index of each input edge. None means no constraint.
output_name_to_node (dict): dictionary with output name as key, and node as value.
return_indice (list): a list to append the input index
When there is no constraint on input index of an edge.
Returns:
parents: a list of matched parent node.
"""
if parent_input_index is not None:
assert len(parent_input_index) == len(parent_op_types)
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
current_node = node
matched_parents = []
for i, op_type in enumerate(parent_op_types):
matched_parent = self.match_parent(
current_node,
op_type,
parent_input_index[i] if parent_input_index is not None else None,
output_name_to_node,
exclude=[],
return_indice=return_indice,
)
if matched_parent is None:
if parent_input_index is not None:
logger.debug(
f"Failed to match index={i} parent_input_index={parent_input_index[i]} op_type={op_type}",
stack_info=True,
)
else:
logger.debug(f"Failed to match index={i} op_type={op_type}", stack_info=True)
return None
matched_parents.append(matched_parent)
current_node = matched_parent
return matched_parents
def find_first_child_by_type(self, node, child_type, input_name_to_nodes=None, recursive=True):
children = self.get_children(node, input_name_to_nodes)
dq = deque(children)
while len(dq) > 0:
current_node = dq.pop()
if current_node.op_type == child_type:
return current_node
if recursive:
children = self.get_children(current_node, input_name_to_nodes)
for child in children:
dq.appendleft(child)
return None
def find_first_parent_by_type(self, node, parent_type, output_name_to_node=None, recursive=True):
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
parents = self.get_parents(node, output_name_to_node)
dq = deque(parents)
while len(dq) > 0:
current_node = dq.pop()
if current_node.op_type == parent_type:
return current_node
if recursive:
parents = self.get_parents(current_node, output_name_to_node)
for parent in parents:
dq.appendleft(parent)
return None
def get_constant_value(self, output_name):
for node in self.get_nodes_by_op_type("Constant"):
if node.output[0] == output_name:
for att in node.attribute:
if att.name == "value":
return numpy_helper.to_array(att.t)
# Fall back to intializer since constant folding might have been applied.
initializer = self.get_initializer(output_name)
if initializer is not None:
return numpy_helper.to_array(initializer)
return None
def get_constant_input(self, node):
for i, input in enumerate(node.input):
value = self.get_constant_value(input)
if value is not None:
return i, value
return None, None
def find_constant_input(self, node, expected_value, delta=0.000001):
i, value = self.get_constant_input(node)
if value is not None and value.size == 1 and abs(value - expected_value) < delta:
return i
return -1
def is_constant_with_specified_dimension(self, output_name, dimensions, description):
value = self.get_constant_value(output_name)
if value is None:
logger.debug(f"{description} {output_name} is not initializer.")
return False
if len(value.shape) != dimensions:
logger.debug(f"{description} {output_name} shall have {dimensions} dimensions. Got shape {value.shape}")
return False
return True
def has_constant_input(self, node, expected_value, delta=0.000001):
return self.find_constant_input(node, expected_value, delta) >= 0
def get_children_subgraph_nodes(self, root_node, stop_nodes, input_name_to_nodes=None):
if input_name_to_nodes is None:
input_name_to_nodes = self.input_name_to_nodes()
children = input_name_to_nodes[root_node.output[0]]
unique_nodes = []
dq = deque(children)
while len(dq) > 0:
current_node = dq.pop()
if current_node in stop_nodes:
continue
if current_node not in unique_nodes:
unique_nodes.append(current_node)
for output in current_node.output:
if output in input_name_to_nodes:
children = input_name_to_nodes[output]
for child in children:
dq.appendleft(child)
return unique_nodes
def tensor_shape_to_list(self, tensor_type):
"""Convert tensor shape to list"""
shape_list = []
for d in tensor_type.shape.dim:
if d.HasField("dim_value"):
shape_list.append(d.dim_value) # known dimension
elif d.HasField("dim_param"):
shape_list.append(d.dim_param) # unknown dimension with symbolic name
else:
shape_list.append("?") # shall not happen
return shape_list
def get_dtype(self, input_or_output: str):
"""Try get data type given a name (could be initializer, graph input or output)."""
tensor_type_map = {obj.name: obj.type for obj in self.model.graph.value_info}
if input_or_output in tensor_type_map:
return tensor_type_map[input_or_output].tensor_type.elem_type
graph_input = self.find_graph_input(input_or_output)
if graph_input:
return graph_input.type.tensor_type.elem_type
graph_output = self.find_graph_output(input_or_output)
if graph_output:
return graph_output.type.tensor_type.elem_type
return None
@staticmethod
def get_node_attribute(node: NodeProto, attribute_name: str):
for attr in node.attribute:
if attr.name == attribute_name:
value = helper.get_attribute_value(attr)
return value
return None
def remove_cascaded_cast_nodes(self):
"""Remove Cast node that are followed by another Cast node like --> Cast --> Cast -->
Note that this shall be used carefully since it might introduce semantic change.
For example, float -> int -> float could get different value than the original float value.
So, it is recommended to used only in post-processing of mixed precision conversion.
"""
output_name_to_node = self.output_name_to_node()
removed_count = 0
for node in self.nodes():
if node.op_type == "Cast":
parent = self.get_parent(node, 0, output_name_to_node=output_name_to_node)
if parent and parent.op_type == "Cast":
node.input[0] = parent.input[0]
removed_count += 1
if removed_count > 0:
logger.info("Removed %d cascaded Cast nodes", removed_count)
self.prune_graph()
def remove_useless_cast_nodes(self):
"""Remove cast nodes that are not needed: input and output has same data type."""
shape_infer = self.infer_runtime_shape(update=True)
if shape_infer is None:
logger.info("Skip removing useless cast nodes since shape inference failed.")
return
def get_data_type(input_or_output_name):
dtype = self.get_dtype(input_or_output_name)
if dtype:
return dtype
if shape_infer.known_vi_[input_or_output_name].type.tensor_type.HasField("elem_type"):
return shape_infer.known_vi_[input_or_output_name].type.tensor_type.elem_type
return None
nodes_to_remove = []
for node in self.nodes():
if node.op_type == "Cast":
input_dtype = get_data_type(node.input[0])
output_dtype = get_data_type(node.output[0])
if input_dtype and input_dtype == output_dtype:
nodes_to_remove.append(node)
if nodes_to_remove:
graph_input_names = set(self.get_graphs_input_names())
graph_output_names = set(self.get_graphs_output_names())
for node in nodes_to_remove:
if bool(set(node.output) & graph_output_names):
if (not bool(set(node.input) & graph_input_names)) and len(
self.input_name_to_nodes()[node.input[0]]
) == 1:
self.replace_output_of_all_nodes(node.input[0], node.output[0])
else:
continue
else:
self.replace_input_of_all_nodes(node.output[0], node.input[0])
self.remove_node(node)
logger.info("Removed %d Cast nodes with output type same as input", len(nodes_to_remove))
def convert_model_float32_to_float16(self, cast_input_output=True):
logger.warning(
"The function convert_model_float32_to_float16 is deprecated. Use convert_float_to_float16 instead!"
)
self.convert_float_to_float16(use_symbolic_shape_infer=True, keep_io_types=cast_input_output)
def convert_float_to_float16(self, use_symbolic_shape_infer=True, **kwargs):
"""Convert a model to half (default) or mixed precision.
To use mixed precision, user need specify which graph inputs, outputs, operator type
or list of nodes shall keep in float32.
By default, we use symbolic shape inference to get shape and type information.
If not, ONNX shape inference will be used.
Note that symbolic/ONNX shape inference might fail, and the conversion might not proceed
without shape and type information.
Args:
use_symbolic_shape_infer (bool, optional): use symbolic shape inference instead of onnx shape inference.
Defaults to True.
keep_io_types (Union[bool, List[str]], optional): boolean or a list of float32 input/output names.
If True, model inputs/outputs should be left as float32.
Defaults to False.
op_block_list (List[str], optional): List of operator types to leave as float32.
Defaults to None, which will use `float16.DEFAULT_OP_BLOCK_LIST`.
node_block_list (List[str], optional): List of node names to leave as float32. Defaults to None.
force_fp16_initializers(bool): force converting all float initializers to float16.
Default to false.
min_positive_val (float, optional): minimal positive value. Defaults to 1e-7.
max_finite_val (float, optional): maximal finite value. Defaults to 1e4.
"""
if "keep_io_types" not in kwargs:
kwargs["keep_io_types"] = True
model = self.model
if use_symbolic_shape_infer:
# Use symbolic shape inference since custom operators (like Gelu, SkipLayerNormalization etc)
# are not recognized by onnx shape inference.
shape_infer_helper = SymbolicShapeInferenceHelper(model)
model = shape_infer_helper.infer_shapes(model, auto_merge=True, guess_output_rank=False)
parameters = {"disable_shape_infer": use_symbolic_shape_infer}
parameters.update(
{
key: kwargs[key]
for key in [
"keep_io_types",
"min_positive_val",
"max_finite_val",
"op_block_list",
"node_block_list",
"force_fp16_initializers",
]
if key in kwargs
}
)
fp16_model = convert_float_to_float16(model, **parameters)
self.initialize(fp16_model)
self.remove_cascaded_cast_nodes()
self.remove_useless_cast_nodes()
def create_node_name(self, op_type, name_prefix=None):
"""Create a unique node name that starts with a prefix (default is operator type).
The name will not be duplicated with any name that generated or existed in current graphs.
Args:
op_type (str): operator type
name_prefix (str, optional): prefix of node name. Defaults to None.
Returns:
str: node name
"""
if name_prefix:
prefix = name_prefix if name_prefix.endswith("_") else (name_prefix + "_")
else:
prefix = op_type + "_"
suffix: int = 0
if prefix in self._node_name_suffix:
suffix = self._node_name_suffix[prefix] + 1
else:
# Check existed node name only once for a prefix
# as we assume create_node_name is called for every new node in fusion.
for node in self.nodes():
if node.name and node.name.startswith(prefix):
try:
index = int(node.name[len(prefix) :])
suffix = max(index + 1, suffix)
except ValueError:
continue
# Record the generated suffix so that we can avoid generating duplicated name.
self._node_name_suffix[prefix] = suffix
return prefix + str(suffix)
def find_graph_input(self, input_name):
for input in self.model.graph.input:
if input.name == input_name:
return input
return None
def find_graph_output(self, output_name):
for output in self.model.graph.output:
if output.name == output_name:
return output
return None
def get_parent_subgraph_nodes(self, node, stop_nodes, output_name_to_node=None):
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
unique_nodes = []
parents = self.get_parents(node, output_name_to_node)
dq = deque(parents)
while len(dq) > 0:
current_node = dq.pop()
if current_node in stop_nodes:
continue
if current_node not in unique_nodes:
unique_nodes.append(current_node)
for input in current_node.input:
if input in output_name_to_node:
dq.appendleft(output_name_to_node[input])
return unique_nodes
def get_graph_inputs(self, current_node, recursive=False):
"""
Find graph inputs that linked to current node.
"""
graph_inputs = []
for input in current_node.input:
if self.find_graph_input(input) and input not in graph_inputs:
graph_inputs.append(input)
if recursive:
parent_nodes = self.get_parent_subgraph_nodes(current_node, [])
for node in parent_nodes:
for input in node.input:
if self.find_graph_input(input) and input not in graph_inputs:
graph_inputs.append(input)
return graph_inputs
@staticmethod
def input_index(node_output, child_node):
index = 0
for input in child_node.input:
if input == node_output:
return index
index += 1
return -1
def remove_unused_constant(self):
input_name_to_nodes = self.input_name_to_nodes()
# remove unused constant
unused_nodes = []
nodes = self.nodes()
for node in nodes:
if node.op_type == "Constant" and node.output[0] not in input_name_to_nodes:
unused_nodes.append(node)
self.remove_nodes(unused_nodes)
if len(unused_nodes) > 0:
logger.debug(f"Removed unused constant nodes: {len(unused_nodes)}")
def prune_graph(self, outputs=None):
"""
Prune graph to keep only required outputs. It removes unnecessary inputs and nodes.
Nodes are not linked (directly or indirectly) to any required output will be removed.
Args:
outputs (list): a list of graph outputs to retain. If it is None, all graph outputs will be kept.
"""
if len(self.graphs()) > 1:
logger.debug("Skip prune_graph since graph has subgraph")
return
if outputs is None:
outputs = [output.name for output in self.model.graph.output]
output_name_to_node = self.output_name_to_node()
all_nodes = []
for output in outputs:
if output in output_name_to_node:
last_node = output_name_to_node[output]
if last_node in all_nodes:
continue
nodes = self.get_parent_subgraph_nodes(last_node, [])
all_nodes.append(last_node)
all_nodes.extend(nodes)
nodes_to_remove = []
for node in self.model.graph.node:
if node not in all_nodes:
nodes_to_remove.append(node)
self.remove_nodes(nodes_to_remove)
# remove outputs not in list
output_to_remove = []
for output in self.model.graph.output:
if output.name not in outputs:
output_to_remove.append(output)
for output in output_to_remove:
self.model.graph.output.remove(output)
# remove inputs not used by any node.
input_name_to_nodes = self.input_name_to_nodes()
input_to_remove = []
for input in self.model.graph.input:
if input.name not in input_name_to_nodes:
input_to_remove.append(input)
for input in input_to_remove:
self.model.graph.input.remove(input)
if input_to_remove or output_to_remove or nodes_to_remove:
logger.info(
"Graph pruned: {} inputs, {} outputs and {} nodes are removed".format(
len(input_to_remove), len(output_to_remove), len(nodes_to_remove)
)
)
self.update_graph()
def update_graph(self, verbose=False):
graph = self.model.graph
remaining_input_names = []
for node in graph.node:
if node.op_type in ["Loop", "Scan", "If"]:
# TODO: handle inner graph
logger.debug(f"Skip update_graph since graph has operator: {node.op_type}")
return
if node.op_type != "Constant":
for input_name in node.input:
if input_name not in remaining_input_names:
remaining_input_names.append(input_name)
if verbose:
logger.debug(f"remaining input names: {remaining_input_names}")
# remove graph input that is not used
inputs_to_remove = []
for input in graph.input:
if input.name not in remaining_input_names:
inputs_to_remove.append(input)
for input in inputs_to_remove:
graph.input.remove(input)
names_to_remove = [input.name for input in inputs_to_remove]
logger.debug(f"remove {len(inputs_to_remove)} unused inputs: {names_to_remove}")
# remove weights that are not used
weights_to_remove = []
weights_to_keep = []
for initializer in graph.initializer:
if initializer.name not in remaining_input_names and not self.find_graph_output(initializer.name):
weights_to_remove.append(initializer)
else:
weights_to_keep.append(initializer.name)
for initializer in weights_to_remove:
graph.initializer.remove(initializer)
names_to_remove = [initializer.name for initializer in weights_to_remove]
logger.debug(f"remove {len(weights_to_remove)} unused initializers: {names_to_remove}")
if verbose:
logger.debug(f"remaining initializers:{weights_to_keep}")
self.remove_unused_constant()
def is_safe_to_fuse_nodes(self, nodes_to_remove, keep_outputs, input_name_to_nodes, output_name_to_node):
for node_to_remove in nodes_to_remove:
for output_to_remove in node_to_remove.output:
if output_to_remove in keep_outputs:
continue
if output_to_remove in input_name_to_nodes:
for impacted_node in input_name_to_nodes[output_to_remove]:
if impacted_node not in nodes_to_remove:
logger.debug(
"it is not safe to remove nodes since output %s is used by %s",
output_to_remove,
impacted_node,
)
return False
return True
@staticmethod
def graph_topological_sort(graph):
deps_count = [0] * len(graph.node) # dependency count of each node
deps_to_nodes = {} # input to node indice
sorted_nodes = [] # initialize sorted_nodes
for node_idx, node in enumerate(graph.node):
# CANNOT use len(node.input) directly because input can be optional
deps_count[node_idx] = sum(1 for _ in node.input if _)
if deps_count[node_idx] == 0: # Constant doesn't depend on any inputs
sorted_nodes.append(graph.node[node_idx])
continue
for input_name in node.input:
if input_name not in deps_to_nodes:
deps_to_nodes[input_name] = [node_idx]
else:
deps_to_nodes[input_name].append(node_idx)
# Note: this logic only applies to top level graph since a sub graph could use intializer from parent graph
initializer_names = [init.name for init in graph.initializer]
graph_input_names = [input.name for input in graph.input]
input_names = initializer_names + graph_input_names
input_names.sort()
prev_input_name = None
for input_name in input_names:
if prev_input_name == input_name:
continue
prev_input_name = input_name
if input_name in deps_to_nodes:
for node_idx in deps_to_nodes[input_name]:
deps_count[node_idx] = deps_count[node_idx] - 1
if deps_count[node_idx] == 0:
sorted_nodes.append(graph.node[node_idx])
start = 0
end = len(sorted_nodes)
while start < end:
for output in sorted_nodes[start].output:
if output in deps_to_nodes:
for node_idx in deps_to_nodes[output]:
deps_count[node_idx] = deps_count[node_idx] - 1
if deps_count[node_idx] == 0:
sorted_nodes.append(graph.node[node_idx])
end = end + 1
start = start + 1
if end != len(graph.node):
raise RuntimeError(
f"Graph is not a DAG: end={end}, len(graph.node)={len(graph.node)}, graph.node[end]={graph.node[end]}"
)
graph.ClearField("node")
graph.node.extend(sorted_nodes)
def topological_sort(self):
# TODO: support graph_topological_sort() in subgraphs
# for graph in self.graphs():
# self.graph_topological_sort(graph)
OnnxModel.graph_topological_sort(self.model.graph)
@staticmethod
def save(
model,
output_path,
save_as_external_data=False,
all_tensors_to_one_file=True,
size_threshold=1024,
convert_attribute=False,
):
Path(output_path).parent.mkdir(parents=True, exist_ok=True)
# Add ms domain if needed
ms_opset = [opset for opset in model.opset_import if opset.domain == "com.microsoft"]
# Check whether there is custom op in top level graph (our fusion is on top level right now).
# May need to extend to subgraph if our fusion are extended to subgraphs.
ms_node = [node for node in model.graph.node if node.domain == "com.microsoft"]
if ms_node and not ms_opset:
opset = model.opset_import.add()
opset.version = 1
opset.domain = "com.microsoft"
if save_as_external_data:
# Save model to external data, which is needed for model size > 2GB
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
external_data_path = output_path + ".data"
location = Path(external_data_path).name if all_tensors_to_one_file else None
if os.path.exists(output_path):
logger.info(f"Delete the existed onnx file: {output_path}")
os.remove(output_path)
if all_tensors_to_one_file:
if os.path.exists(external_data_path):
# Delete the external data file. Otherwise, data will be appended to existing file.
logger.info(f"Delete the existed external data file: {external_data_path}")
os.remove(external_data_path)
else:
if os.listdir(output_dir):
raise RuntimeError(f"Output directory ({output_dir}) for external data is not empty.")
save_model(
model,
output_path,
save_as_external_data=True,
all_tensors_to_one_file=all_tensors_to_one_file,
location=location,
size_threshold=size_threshold,
convert_attribute=convert_attribute,
)
else:
save_model(model, output_path)
def save_model_to_file(self, output_path, use_external_data_format=False, all_tensors_to_one_file=True):
logger.info("Sort graphs in topological order")
self.topological_sort()
# Note: After the model is saved to another directory with external data,
# You need reload the onnx model if you want to read tensor from self.model object.
# It is because the base directory is not updated for self.model object so attempt to read tensor data
# might encounter error since external data cannot be located.
OnnxModel.save(self.model, output_path, use_external_data_format, all_tensors_to_one_file)
logger.info(f"Model saved to {output_path}")
def get_graph_inputs_excluding_initializers(self):
"""
Returns real graph inputs (excluding initializers from older onnx model).
"""
graph_inputs = []
for input in self.model.graph.input:
if self.get_initializer(input.name) is None:
graph_inputs.append(input)
return graph_inputs
def get_opset_version(self):
"""Get opset version of onnx domain
Raises:
RuntimeError: ONNX model has no opset for default domain.
Returns:
int: opset version of onnx domain.
"""
for opset in self.model.opset_import:
if opset.domain in ["", "ai.onnx"]:
return opset.version
raise RuntimeError("ONNX model has no opset for default domain")
@staticmethod
def has_same_value(tensor1: TensorProto, tensor2: TensorProto) -> bool:
"""Returns True when two tensors have same value.
Note that name can be different.
Args:
tensor1 (TensorProto): initializer 1
tensor2 (TensorProto): initializer 2
Returns:
bool: True when two intializers has same value.
"""
if tensor1.data_type != tensor2.data_type or tensor1.dims != tensor2.dims:
return False
if tensor1.HasField("raw_data") and tensor2.HasField("raw_data"):
return tensor1.raw_data == tensor2.raw_data
return numpy_helper.to_array(tensor1) == numpy_helper.to_array(tensor2)
def remove_duplicated_initializer(self):
"""Remove initializers with duplicated values, and only keep the first one.
It could help reduce size of models (like ALBert) with shared weights.
Note: this function does not process subgraph.
"""
if len(self.graphs()) > 1:
logger.warning("remove_duplicated_initializer does not process subgraphs.")
initializer_count = len(self.model.graph.initializer)
same = [-1] * initializer_count
for i in range(initializer_count - 1):
if same[i] >= 0:
continue
for j in range(i + 1, initializer_count):
if OnnxModel.has_same_value(self.model.graph.initializer[i], self.model.graph.initializer[j]):
same[j] = i
count = 0
for i in range(initializer_count):
if same[i] >= 0:
count += 1
self.replace_input_of_all_nodes(
self.model.graph.initializer[i].name, self.model.graph.initializer[same[i]].name
)
if count > 0:
self.update_graph()
print(f"Removed {count} initializers with duplicated value")
def add_prefix_to_names(self, prefix: str):
"""Add prefix to initializer or intermediate outputs in graph. Main graph inputs and outputs are excluded.
It could help avoid conflicting in name of node_args when merging two graphs.
Note: this function does not process subgraph.
"""
if len(self.graphs()) > 1:
logger.warning("add_prefix_to_names does not process subgraphs.")
# Exclude the names of inputs and outputs of main graph (but not subgraphs)
# and empty names ("") as they have special meaning to denote missing optional inputs
excluded = [i.name for i in self.model.graph.input] + [o.name for o in self.model.graph.output] + [""]
for initializer in self.model.graph.initializer:
if initializer.name not in excluded:
if prefix + initializer.name not in excluded:
initializer.name = prefix + initializer.name
for node in self.model.graph.node:
# update name of node inputs
for j in range(len(node.input)):
if node.input[j] not in excluded:
if prefix + node.input[j] not in excluded:
node.input[j] = prefix + node.input[j]
# update name of node outputs
for j in range(len(node.output)):
if node.output[j] not in excluded:
if prefix + node.output[j] not in excluded:
node.output[j] = prefix + node.output[j]
for value_info in self.model.graph.value_info:
if value_info.name not in excluded:
value_info.name = prefix + value_info.name