m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

315 lines
11 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
import logging
from fusion_attention import AttentionMask, FusionAttention
from fusion_reshape import FusionReshape
from onnx import numpy_helper
from onnx_model import OnnxModel
from onnx_model_bert import BertOnnxModel
logger = logging.getLogger(__name__)
class FusionBartEncoderAttention(FusionAttention):
"""
Fuse Bart Attention subgraph into one Attention node.
"""
def __init__(
self,
model: OnnxModel,
hidden_size: int,
num_heads: int,
attention_mask: AttentionMask,
):
super().__init__(model, hidden_size, num_heads, attention_mask)
def check_runtime_shape_path(
self,
reshape_qkv_2,
reshape_qkv_1,
reshape_q_2,
reshape_k_2,
reshape_v_2,
root_input,
):
concat_qkv_2_path = self.model.match_parent_path(reshape_qkv_2, ["Concat"], [1])
if concat_qkv_2_path is None:
return False
concat_qkv_2 = concat_qkv_2_path[0]
reshape_qkv_2_path_1 = self.model.match_parent_path(concat_qkv_2, ["Unsqueeze", "Gather", "Shape"], [0, 0, 0])
reshape_qkv_2_path_2 = self.model.match_parent_path(concat_qkv_2, ["Unsqueeze", "Gather", "Shape"], [1, 0, 0])
reshape_qkv_2_path_3 = self.model.match_parent_path(concat_qkv_2, ["Unsqueeze", "Gather", "Shape"], [2, 0, 0])
if reshape_qkv_2_path_1 is None or reshape_qkv_2_path_2 is None or reshape_qkv_2_path_3 is None:
return False
_, gather_1, shape_1 = reshape_qkv_2_path_1
_, gather_2, shape_2 = reshape_qkv_2_path_2
_, _, shape_3 = reshape_qkv_2_path_3
if shape_1.input[0] != root_input or shape_2.input[0] != root_input or shape_3.input[0] != root_input:
return False
reshape_qkv_1_path_1 = self.model.match_parent_path(reshape_qkv_1, ["Concat", "Unsqueeze", "Gather"], [1, 0, 0])
reshape_qkv_1_path_2 = self.model.match_parent_path(reshape_qkv_1, ["Concat", "Unsqueeze", "Gather"], [1, 2, 0])
if reshape_qkv_1_path_1 is None or reshape_qkv_1_path_2 is None:
return False
if reshape_qkv_1_path_1[-1].name != gather_1.name or reshape_qkv_1_path_2[-1].name != gather_2.name:
return False
reshape_q_2_path = self.model.match_parent_path(reshape_q_2, ["Concat", "Unsqueeze", "Mul"], [1, 0, 0])
reshape_k_2_path = self.model.match_parent_path(reshape_k_2, ["Concat", "Unsqueeze", "Mul"], [1, 0, 0])
reshape_v_2_path = self.model.match_parent_path(reshape_v_2, ["Concat", "Unsqueeze", "Mul"], [1, 0, 0])
if reshape_q_2_path is None or reshape_k_2_path is None or reshape_v_2_path is None:
return False
mul_q = reshape_q_2_path[-1]
mul_k = reshape_k_2_path[-1]
mul_v = reshape_v_2_path[-1]
gather_1_out = gather_1.output[0]
if mul_q.input[0] != gather_1_out or mul_k.input[0] != gather_1_out or mul_v.input[0] != gather_1_out:
return False
return True
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
# SkipLayerNormalization has two inputs, and one of them is the root input for attention.
qkv_nodes = self.model.match_parent_path(
normalize_node,
["Add", "MatMul", "Reshape", "Transpose", "Reshape", "MatMul"],
[None, 1, 0, 0, 0, 0],
)
if qkv_nodes is not None:
(
add_out,
matmul_out,
reshape_qkv_2,
transpose_qkv,
reshape_qkv_1,
matmul_qkv,
) = qkv_nodes
else:
return
other_inputs = []
for i, input in enumerate(normalize_node.input):
if input not in output_name_to_node:
continue
if input == qkv_nodes[0].output[0]:
continue
other_inputs.append(input)
if len(other_inputs) != 1:
return
root_input = other_inputs[0]
children = input_name_to_nodes[root_input]
children_types = [child.op_type for child in children]
if children_types.count("MatMul") != 3:
return
v_nodes = self.model.match_parent_path(
matmul_qkv,
["Reshape", "Transpose", "Reshape", "Add", "MatMul"],
[1, 0, 0, 0, None],
)
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(reshape_v_2, transpose_v, reshape_v_1, add_v, matmul_v) = v_nodes
qk_nodes = self.model.match_parent_path(matmul_qkv, ["Softmax", "MatMul"], [0, 0])
if qk_nodes is not None:
_, matmul_qk = qk_nodes
else:
return
q_nodes = self.model.match_parent_path(
matmul_qk,
["Reshape", "Transpose", "Reshape", "Mul", "Add", "MatMul"],
[0, 0, 0, 0, 0, 1],
)
if q_nodes is not None:
reshape_q_2, _, reshape_q_1, _, add_q, matmul_q = q_nodes
else:
return
k_nodes = self.model.match_parent_path(
matmul_qk,
["Transpose", "Reshape", "Transpose", "Reshape", "Add", "MatMul"],
[1, 0, 0, 0, 0, 1],
)
if k_nodes is not None:
_, reshape_k_2, _, reshape_k_1, add_k, matmul_k = k_nodes
else:
return
if not self.check_runtime_shape_path(
reshape_qkv_2,
reshape_qkv_1,
reshape_q_2,
reshape_k_2,
reshape_v_2,
root_input,
):
return
if matmul_v.input[0] == root_input and matmul_q.input[0] == root_input and matmul_v.input[0] == root_input:
mask_nodes = []
mask_index = None
attention_last_node = reshape_qkv_2
num_heads, hidden_size = self.get_num_heads_and_hidden_size(reshape_q_1)
if num_heads <= 0 or hidden_size <= 0 or (hidden_size % num_heads) != 0:
logger.debug("fuse_attention: failed to detect num_heads or hidden_size")
return
new_node = self.create_attention_node(
mask_index,
matmul_q,
matmul_k,
matmul_v,
add_q,
add_k,
add_v,
num_heads,
hidden_size,
root_input,
attention_last_node.output[0],
None,
)
if new_node is None:
return
self.nodes_to_add.append(new_node)
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
self.nodes_to_remove.extend([attention_last_node, transpose_qkv, matmul_qkv])
self.nodes_to_remove.extend(qk_nodes)
self.nodes_to_remove.extend(q_nodes)
self.nodes_to_remove.extend(k_nodes)
self.nodes_to_remove.extend(v_nodes)
# Use prune graph to remove mask nodes since they are shared by all attention nodes.
self.nodes_to_remove.extend(mask_nodes)
self.prune_graph = True
class FusionBartReshape(FusionReshape):
def __init__(self, model: OnnxModel):
super().__init__(model)
def fuse(self, reshape_node, input_name_to_nodes, output_name_to_node):
if reshape_node.input[1] not in output_name_to_node:
return
concat_node = output_name_to_node[reshape_node.input[1]]
if concat_node.op_type != "Concat" or len(concat_node.input) != 4:
return
path0 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Gather", "Shape"],
[0, 0, 0],
output_name_to_node,
)
if path0 is None:
return
(_, gather_0, shape_0) = path0
shape = []
gather_value = self.model.get_constant_value(gather_0.input[1])
if gather_value == 0:
shape.append(0)
path1 = self.model.match_parent_path(
concat_node,
["Unsqueeze", "Gather", "Shape"],
[1, 0, 0],
output_name_to_node,
)
if path1 is None:
input_1_proto = self.model.get_initializer(concat_node.input[1])
input_2_proto = self.model.get_initializer(concat_node.input[2])
input_3_proto = self.model.get_initializer(concat_node.input[3])
if input_1_proto is None or input_2_proto is None or input_3_proto is None:
return
input_1 = numpy_helper.to_array(input_1_proto)
input_2 = numpy_helper.to_array(input_2_proto)
input_3 = numpy_helper.to_array(input_3_proto)
if len(input_1) != 1 or len(input_2) != 1 or len(input_3) != 1:
return
if not (input_1[0] == -1 and input_2[0] > 0 and input_3[0] > 0):
return
shape.extend(input_1)
shape.extend(input_2)
shape.extend(input_3)
gemm_path = self.model.match_parent_path(reshape_node, ["Add", "MatMul"], [0, 1], output_name_to_node)
if gemm_path is None:
return
top_matmul = gemm_path[-1]
root_input = top_matmul.input[0]
if shape_0.input[0] != root_input:
return
self.replace_reshape_node(shape, reshape_node, concat_node)
else:
(_, gather_1, shape_1) = path1
gather_value = self.model.get_constant_value(gather_1.input[1])
if gather_value == 1:
shape.append(0)
input_2_proto = self.model.get_initializer(concat_node.input[2])
input_3_proto = self.model.get_initializer(concat_node.input[3])
if input_2_proto is None or input_3_proto is None:
return
input_2 = numpy_helper.to_array(input_2_proto)
input_3 = numpy_helper.to_array(input_3_proto)
if len(input_2) != 1 or len(input_3) != 1:
return
if not (input_2[0] > 0 and input_3[0] > 0):
return
shape.extend(input_2)
shape.extend(input_3)
gemm_path = self.model.match_parent_path(
reshape_node, ["Mul", "Add", "MatMul"], [0, 0, 1], output_name_to_node
)
if gemm_path is None:
return
top_matmul = gemm_path[-1]
root_input = top_matmul.input[0]
if shape_0.input[0] != root_input or shape_1.input[0] != root_input:
return
self.replace_reshape_node(shape, reshape_node, concat_node)
class BartOnnxModel(BertOnnxModel):
def __init__(self, model, num_heads, hidden_size):
super().__init__(model, num_heads, hidden_size)
self.attention_mask = AttentionMask(self)
self.attention_fusion = FusionBartEncoderAttention(self, self.hidden_size, self.num_heads, self.attention_mask)
self.bart_reshape_fusion_preprocess = FusionBartReshape(self)
def fuse_attention(self):
self.attention_fusion.apply()
def preprocess(self):
self.adjust_reshape_and_expand()
self.bart_reshape_fusion_preprocess.apply()