m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

98 lines
3.6 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
import logging
import onnx
from fusion_gpt_attention import FusionGptAttention
from fusion_gpt_attention_megatron import FusionGptAttentionMegatron
from fusion_gpt_attention_no_past import FusionGptAttentionNoPast
from onnx_model_bert import BertOnnxModel
logger = logging.getLogger(__name__)
class Gpt2OnnxModel(BertOnnxModel):
def __init__(self, model, num_heads, hidden_size):
super().__init__(model, num_heads, hidden_size)
def fuse_attention(self):
if len(self.model.graph.input) == 1 or len(self.model.graph.output) == 1:
fusion = FusionGptAttentionNoPast(self, self.num_heads)
fusion.apply()
else:
fusion = FusionGptAttention(self, self.num_heads)
fusion.apply()
fusion = FusionGptAttentionMegatron(self, self.num_heads)
fusion.apply()
def postprocess(self):
"""
Remove extra reshape nodes.
"""
logger.debug(f"start postprocessing...")
input_name_to_nodes = self.input_name_to_nodes()
output_name_to_node = self.output_name_to_node()
reshape_count = 0
for gemm_node in self.get_nodes_by_op_type("Gemm"):
reshape_after_gemm = self.find_first_child_by_type(
gemm_node, "Reshape", input_name_to_nodes, recursive=False
)
return_indice = []
nodes = self.match_parent_path(gemm_node, ["Reshape", "FastGelu"], [0, 0], output_name_to_node)
if nodes is None:
nodes = self.match_parent_path(
gemm_node,
["Reshape", "LayerNormalization"],
[0, 0],
output_name_to_node,
)
if nodes is None:
nodes = self.match_parent_path(
gemm_node,
["Reshape", "SkipLayerNormalization"],
[0, 0],
output_name_to_node,
)
if nodes is None:
continue
(reshape_before_gemm, root_node) = nodes
matmul_node_name = self.create_node_name("MatMul", "FullyConnect_MatMul")
matmul_node = onnx.helper.make_node(
"MatMul",
inputs=[matmul_node_name + "_input", gemm_node.input[1]],
outputs=[matmul_node_name + "_output"],
name=matmul_node_name,
)
add_node_name = self.create_node_name("Add", "FullyConnect_Add")
add_node = onnx.helper.make_node(
"Add",
inputs=[matmul_node_name + "_output", gemm_node.input[2]],
outputs=[add_node_name + "_output"],
name=add_node_name,
)
self.replace_input_of_all_nodes(reshape_after_gemm.output[0], add_node_name + "_output")
# Link root node output with MatMul
self.replace_input_of_all_nodes(root_node.output[0], matmul_node_name + "_input")
root_node.output[0] = matmul_node_name + "_input"
self.replace_input_of_all_nodes(reshape_after_gemm.output[0], add_node_name + "_output")
self.add_node(matmul_node)
self.add_node(add_node)
reshape_count += 2
self.prune_graph()
logger.info(f"postprocess: remove Reshape count:{reshape_count}")