m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

169 lines
6.1 KiB

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import Optional
from fusion_attention_unet import FusionAttentionUnet
from fusion_biassplitgelu import FusionBiasSplitGelu
from fusion_group_norm import FusionGroupNorm
from fusion_nhwc_conv import FusionNhwcConv
from fusion_options import FusionOptions
from fusion_transpose import FusionTranspose
from onnx import ModelProto
from onnx_model import OnnxModel
from onnx_model_bert import BertOnnxModel
logger = getLogger(__name__)
class UnetOnnxModel(BertOnnxModel):
def __init__(self, model: ModelProto, num_heads: int = 0, hidden_size: int = 0):
"""Initialize UNet ONNX Model.
Args:
model (ModelProto): the ONNX model
num_heads (int, optional): number of attention heads. Defaults to 0 (detect the parameter automatically).
hidden_size (int, optional): hidden dimension. Defaults to 0 (detect the parameter automatically).
"""
assert (num_heads == 0 and hidden_size == 0) or (num_heads > 0 and hidden_size % num_heads == 0)
super().__init__(model, num_heads=num_heads, hidden_size=hidden_size)
def preprocess(self):
self.remove_useless_div()
def postprocess(self):
self.merge_sequential_transpose()
self.prune_graph()
self.remove_unused_constant()
def remove_useless_div(self):
"""Remove Div by 1"""
div_nodes = [node for node in self.nodes() if node.op_type == "Div"]
nodes_to_remove = []
for div in div_nodes:
if self.find_constant_input(div, 1.0) == 1:
nodes_to_remove.append(div)
for node in nodes_to_remove:
self.replace_input_of_all_nodes(node.output[0], node.input[0])
if nodes_to_remove:
self.remove_nodes(nodes_to_remove)
logger.info("Removed %d useless Div (by 1) nodes", len(nodes_to_remove))
def convert_conv_to_nhwc(self):
# Do not update weight here since save external data has a bug
conv_to_nhwc_conv = FusionNhwcConv(self, update_weight=False)
conv_to_nhwc_conv.apply()
def merge_sequential_transpose(self):
fusion_transpose = FusionTranspose(self)
fusion_transpose.apply()
remove_count = 0
nodes = self.get_nodes_by_op_type("Transpose")
for node in nodes:
permutation = OnnxModel.get_node_attribute(node, "perm")
assert isinstance(permutation, list)
if permutation != list(range(len(permutation))):
continue
assert not (
self.find_graph_output(node.output[0])
or self.find_graph_input(node.input[0])
or self.find_graph_output(node.input[0])
)
# Let all children nodes skip current Transpose node and link to its parent
# Note that we cannot update parent node output since parent node might have more than one children.
self.replace_input_of_all_nodes(node.output[0], node.input[0])
self.remove_node(node)
remove_count += 1
total = len(fusion_transpose.nodes_to_remove) + remove_count
if total:
logger.info("Removed %d Transpose nodes", total)
def optimize(self, options: Optional[FusionOptions] = None):
if (options is not None) and not options.enable_shape_inference:
self.disable_shape_inference()
self.utils.remove_identity_nodes()
# Remove cast nodes that having same data type of input and output based on symbolic shape inference.
self.utils.remove_useless_cast_nodes()
if (options is None) or options.enable_layer_norm:
self.fuse_layer_norm()
if (options is None) or options.enable_gelu:
self.fuse_gelu()
self.preprocess()
self.fuse_reshape()
if (options is None) or options.enable_group_norm:
group_norm_fusion = FusionGroupNorm(self)
group_norm_fusion.apply()
if (options is None) or options.enable_bias_splitgelu:
bias_split_gelu_fusion = FusionBiasSplitGelu(self)
bias_split_gelu_fusion.apply()
if (options is None) or options.enable_attention:
self_attention_fusion = FusionAttentionUnet(self, self.hidden_size, self.num_heads, False, False)
self_attention_fusion.apply()
enable_packed_kv = (options is None) or options.enable_packed_kv
cross_attention_fusion = FusionAttentionUnet(self, self.hidden_size, self.num_heads, True, enable_packed_kv)
cross_attention_fusion.apply()
if (options is None) or options.enable_skip_layer_norm:
self.fuse_skip_layer_norm()
self.fuse_shape()
# Remove reshape nodes that having same shape of input and output based on symbolic shape inference.
self.utils.remove_useless_reshape_nodes()
self.convert_conv_to_nhwc()
if (options is None) or options.enable_bias_skip_layer_norm:
# Fuse SkipLayerNormalization and Add Bias before it.
self.fuse_add_bias_skip_layer_norm()
if options is not None and options.enable_gelu_approximation:
self.gelu_approximation()
self.postprocess()
logger.info(f"opset version: {self.get_opset_version()}")
def get_fused_operator_statistics(self):
"""
Returns node count of fused operators.
"""
op_count = {}
ops = [
"Attention",
"MultiHeadAttention",
"Gelu",
"FastGelu",
"LayerNormalization",
"SkipLayerNormalization",
"BiasSplitGelu",
"GroupNorm",
"NhwcConv",
]
for op in ops:
nodes = self.get_nodes_by_op_type(op)
op_count[op] = len(nodes)
logger.info(f"Optimized operators:{op_count}")
return op_count