m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

227 lines
9.2 KiB

from sympy.core.function import diff
from sympy.core.numbers import (E, I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, asin, cos, sin)
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import Matrix
from sympy.simplify.trigsimp import trigsimp
from sympy.algebras.quaternion import Quaternion
from sympy.testing.pytest import raises
w, x, y, z = symbols('w:z')
phi = symbols('phi')
def test_quaternion_construction():
q = Quaternion(w, x, y, z)
assert q + q == Quaternion(2*w, 2*x, 2*y, 2*z)
q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3),
pi*Rational(2, 3))
assert q2 == Quaternion(S.Half, S.Half,
S.Half, S.Half)
M = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]])
q3 = trigsimp(Quaternion.from_rotation_matrix(M))
assert q3 == Quaternion(sqrt(2)*sqrt(cos(phi) + 1)/2, 0, 0, sqrt(2 - 2*cos(phi))*sign(sin(phi))/2)
nc = Symbol('nc', commutative=False)
raises(ValueError, lambda: Quaternion(w, x, nc, z))
def test_quaternion_axis_angle():
test_data = [ # axis, angle, expected_quaternion
((1, 0, 0), 0, (1, 0, 0, 0)),
((1, 0, 0), pi/2, (sqrt(2)/2, sqrt(2)/2, 0, 0)),
((0, 1, 0), pi/2, (sqrt(2)/2, 0, sqrt(2)/2, 0)),
((0, 0, 1), pi/2, (sqrt(2)/2, 0, 0, sqrt(2)/2)),
((1, 0, 0), pi, (0, 1, 0, 0)),
((0, 1, 0), pi, (0, 0, 1, 0)),
((0, 0, 1), pi, (0, 0, 0, 1)),
((1, 1, 1), pi, (0, 1/sqrt(3),1/sqrt(3),1/sqrt(3))),
((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), pi*2/3, (S.Half, S.Half, S.Half, S.Half))
]
for axis, angle, expected in test_data:
assert Quaternion.from_axis_angle(axis, angle) == Quaternion(*expected)
def test_quaternion_axis_angle_simplification():
result = Quaternion.from_axis_angle((1, 2, 3), asin(4))
assert result.a == cos(asin(4)/2)
assert result.b == sqrt(14)*sin(asin(4)/2)/14
assert result.c == sqrt(14)*sin(asin(4)/2)/7
assert result.d == 3*sqrt(14)*sin(asin(4)/2)/14
def test_quaternion_complex_real_addition():
a = symbols("a", complex=True)
b = symbols("b", real=True)
# This symbol is not complex:
c = symbols("c", commutative=False)
q = Quaternion(w, x, y, z)
assert a + q == Quaternion(w + re(a), x + im(a), y, z)
assert 1 + q == Quaternion(1 + w, x, y, z)
assert I + q == Quaternion(w, 1 + x, y, z)
assert b + q == Quaternion(w + b, x, y, z)
raises(ValueError, lambda: c + q)
raises(ValueError, lambda: q * c)
raises(ValueError, lambda: c * q)
assert -q == Quaternion(-w, -x, -y, -z)
q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
q2 = Quaternion(1, 4, 7, 8)
assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I)
assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8)
assert q1 * (2 + 3*I) == \
Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I))
assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5)
q1 = Quaternion(1, 2, 3, 4)
q0 = Quaternion(0, 0, 0, 0)
assert q1 + q0 == q1
assert q1 - q0 == q1
assert q1 - q1 == q0
def test_quaternion_evalf():
assert Quaternion(sqrt(2), 0, 0, sqrt(3)).evalf() == Quaternion(sqrt(2).evalf(), 0, 0, sqrt(3).evalf())
assert Quaternion(1/sqrt(2), 0, 0, 1/sqrt(2)).evalf() == Quaternion((1/sqrt(2)).evalf(), 0, 0, (1/sqrt(2)).evalf())
def test_quaternion_functions():
q = Quaternion(w, x, y, z)
q1 = Quaternion(1, 2, 3, 4)
q0 = Quaternion(0, 0, 0, 0)
assert conjugate(q) == Quaternion(w, -x, -y, -z)
assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2)
assert q.normalize() == Quaternion(w, x, y, z) / sqrt(w**2 + x**2 + y**2 + z**2)
assert q.inverse() == Quaternion(w, -x, -y, -z) / (w**2 + x**2 + y**2 + z**2)
assert q.inverse() == q.pow(-1)
raises(ValueError, lambda: q0.inverse())
assert q.pow(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
assert q**(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
assert q1.pow(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
assert q1**(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
assert q1.pow(-0.5) == NotImplemented
raises(TypeError, lambda: q1**(-0.5))
assert q1.exp() == \
Quaternion(E * cos(sqrt(29)),
2 * sqrt(29) * E * sin(sqrt(29)) / 29,
3 * sqrt(29) * E * sin(sqrt(29)) / 29,
4 * sqrt(29) * E * sin(sqrt(29)) / 29)
assert q1._ln() == \
Quaternion(log(sqrt(30)),
2 * sqrt(29) * acos(sqrt(30)/30) / 29,
3 * sqrt(29) * acos(sqrt(30)/30) / 29,
4 * sqrt(29) * acos(sqrt(30)/30) / 29)
assert q1.pow_cos_sin(2) == \
Quaternion(30 * cos(2 * acos(sqrt(30)/30)),
60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29)
assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1)
assert integrate(Quaternion(x, x, x, x), x) == \
Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2)
assert Quaternion.rotate_point((1, 1, 1), q1) == (S.One / 5, 1, S(7) / 5)
n = Symbol('n')
raises(TypeError, lambda: q1**n)
n = Symbol('n', integer=True)
raises(TypeError, lambda: q1**n)
def test_quaternion_conversions():
q1 = Quaternion(1, 2, 3, 4)
assert q1.to_axis_angle() == ((2 * sqrt(29)/29,
3 * sqrt(29)/29,
4 * sqrt(29)/29),
2 * acos(sqrt(30)/30))
assert q1.to_rotation_matrix() == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15)],
[Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
[Rational(1, 3), Rational(14, 15), Rational(2, 15)]])
assert q1.to_rotation_matrix((1, 1, 1)) == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15), Rational(4, 5)],
[Rational(2, 3), Rational(-1, 3), Rational(2, 3), S.Zero],
[Rational(1, 3), Rational(14, 15), Rational(2, 15), Rational(-2, 5)],
[S.Zero, S.Zero, S.Zero, S.One]])
theta = symbols("theta", real=True)
q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2))
assert trigsimp(q2.to_rotation_matrix()) == Matrix([
[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta), 0],
[0, 0, 1]])
assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))),
2*acos(cos(theta/2)))
assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([
[cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1],
[sin(theta), cos(theta), 0, -sin(theta) - cos(theta) + 1],
[0, 0, 1, 0],
[0, 0, 0, 1]])
def test_quaternion_rotation_iss1593():
"""
There was a sign mistake in the definition,
of the rotation matrix. This tests that particular sign mistake.
See issue 1593 for reference.
See wikipedia
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
for the correct definition
"""
q = Quaternion(cos(phi/2), sin(phi/2), 0, 0)
assert(trigsimp(q.to_rotation_matrix()) == Matrix([
[1, 0, 0],
[0, cos(phi), -sin(phi)],
[0, sin(phi), cos(phi)]]))
def test_quaternion_multiplication():
q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
q2 = Quaternion(1, 2, 3, 5)
q3 = Quaternion(1, 1, 1, y)
assert Quaternion._generic_mul(4, 1) == 4
assert Quaternion._generic_mul(4, q1) == Quaternion(12 + 16*I, 8 + 20*I, 0, 28 + 32*I)
assert q2.mul(2) == Quaternion(2, 4, 6, 10)
assert q2.mul(q3) == Quaternion(-5*y - 4, 3*y - 2, 9 - 2*y, y + 4)
assert q2.mul(q3) == q2*q3
z = symbols('z', complex=True)
z_quat = Quaternion(re(z), im(z), 0, 0)
q = Quaternion(*symbols('q:4', real=True))
assert z * q == z_quat * q
assert q * z == q * z_quat
def test_issue_16318():
#for rtruediv
q0 = Quaternion(0, 0, 0, 0)
raises(ValueError, lambda: 1/q0)
#for rotate_point
q = Quaternion(1, 2, 3, 4)
(axis, angle) = q.to_axis_angle()
assert Quaternion.rotate_point((1, 1, 1), (axis, angle)) == (S.One / 5, 1, S(7) / 5)
#test for to_axis_angle
q = Quaternion(-1, 1, 1, 1)
axis = (-sqrt(3)/3, -sqrt(3)/3, -sqrt(3)/3)
angle = 2*pi/3
assert (axis, angle) == q.to_axis_angle()