You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
252 lines
9.7 KiB
252 lines
9.7 KiB
from sympy.core.singleton import S
|
|
from sympy.combinatorics.fp_groups import (FpGroup, low_index_subgroups,
|
|
reidemeister_presentation, FpSubgroup,
|
|
simplify_presentation)
|
|
from sympy.combinatorics.free_groups import (free_group, FreeGroup)
|
|
|
|
from sympy.testing.pytest import slow
|
|
|
|
"""
|
|
References
|
|
==========
|
|
|
|
[1] Holt, D., Eick, B., O'Brien, E.
|
|
"Handbook of Computational Group Theory"
|
|
|
|
[2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
|
|
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
|
|
"Implementation and Analysis of the Todd-Coxeter Algorithm"
|
|
|
|
[3] PROC. SECOND INTERNAT. CONF. THEORY OF GROUPS, CANBERRA 1973,
|
|
pp. 347-356. "A Reidemeister-Schreier program" by George Havas.
|
|
http://staff.itee.uq.edu.au/havas/1973cdhw.pdf
|
|
|
|
"""
|
|
|
|
def test_low_index_subgroups():
|
|
F, x, y = free_group("x, y")
|
|
|
|
# Example 5.10 from [1] Pg. 194
|
|
f = FpGroup(F, [x**2, y**3, (x*y)**4])
|
|
L = low_index_subgroups(f, 4)
|
|
t1 = [[[0, 0, 0, 0]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]],
|
|
[[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]],
|
|
[[1, 1, 0, 0], [0, 0, 1, 1]]]
|
|
for i in range(len(t1)):
|
|
assert L[i].table == t1[i]
|
|
|
|
f = FpGroup(F, [x**2, y**3, (x*y)**7])
|
|
L = low_index_subgroups(f, 15)
|
|
t2 = [[[0, 0, 0, 0]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
|
[4, 4, 5, 3], [6, 6, 3, 4], [5, 5, 6, 6]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
|
[6, 6, 5, 3], [5, 5, 3, 4], [4, 4, 6, 6]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
|
[6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
|
|
[11, 11, 9, 6], [9, 9, 6, 8], [12, 12, 11, 7], [8, 8, 7, 10],
|
|
[10, 10, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
|
[6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
|
|
[11, 11, 9, 6], [12, 12, 6, 8], [10, 10, 11, 7], [8, 8, 7, 10],
|
|
[9, 9, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
|
[6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
|
|
[11, 11, 9, 6], [12, 12, 6, 8], [13, 13, 11, 7], [8, 8, 7, 10],
|
|
[9, 9, 12, 12], [10, 10, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
|
|
, [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
|
|
[10, 10, 7, 8], [9, 9, 11, 12], [11, 11, 12, 10], [13, 13, 10, 11],
|
|
[12, 12, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
|
|
, [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
|
|
[10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
|
|
[11, 11, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 4, 4]
|
|
, [7, 7, 6, 3], [8, 8, 3, 5], [5, 5, 8, 9], [6, 6, 9, 7],
|
|
[10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
|
|
[11, 11, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
|
, [5, 5, 6, 3], [9, 9, 3, 5], [10, 10, 8, 4], [8, 8, 4, 7],
|
|
[6, 6, 10, 11], [7, 7, 11, 9], [12, 12, 9, 10], [11, 11, 13, 14],
|
|
[14, 14, 14, 12], [13, 13, 12, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
|
, [6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
|
, [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
|
|
[5, 5, 10, 12], [7, 7, 12, 9], [8, 8, 11, 11], [13, 13, 9, 10],
|
|
[12, 12, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
|
, [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
|
|
[5, 5, 12, 11], [7, 7, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
|
|
[12, 12, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
|
, [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
|
|
[5, 5, 9, 9], [6, 6, 11, 12], [8, 8, 12, 10], [13, 13, 10, 11],
|
|
[12, 12, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
|
, [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
|
|
[5, 5, 12, 11], [6, 6, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
|
|
[12, 12, 13, 13]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
|
, [9, 9, 6, 3], [10, 10, 3, 5], [11, 11, 8, 4], [12, 12, 4, 7],
|
|
[5, 5, 9, 9], [6, 6, 12, 13], [7, 7, 11, 11], [8, 8, 13, 10],
|
|
[13, 13, 10, 12]],
|
|
[[1, 1, 0, 0], [0, 0, 2, 3], [4, 4, 3, 1], [5, 5, 1, 2], [2, 2, 4, 4]
|
|
, [3, 3, 6, 7], [7, 7, 7, 5], [6, 6, 5, 6]]]
|
|
for i in range(len(t2)):
|
|
assert L[i].table == t2[i]
|
|
|
|
f = FpGroup(F, [x**2, y**3, (x*y)**7])
|
|
L = low_index_subgroups(f, 10, [x])
|
|
t3 = [[[0, 0, 0, 0]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [4, 4, 5, 3],
|
|
[6, 6, 3, 4], [5, 5, 6, 6]],
|
|
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [6, 6, 5, 3],
|
|
[5, 5, 3, 4], [4, 4, 6, 6]],
|
|
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8],
|
|
[6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]]]
|
|
for i in range(len(t3)):
|
|
assert L[i].table == t3[i]
|
|
|
|
|
|
def test_subgroup_presentations():
|
|
F, x, y = free_group("x, y")
|
|
f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
|
H = [x*y, x**-1*y**-1*x*y*x]
|
|
p1 = reidemeister_presentation(f, H)
|
|
assert str(p1) == "((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))"
|
|
|
|
H = f.subgroup(H)
|
|
assert (H.generators, H.relators) == p1
|
|
|
|
f = FpGroup(F, [x**3, y**3, (x*y)**3])
|
|
H = [x*y, x*y**-1]
|
|
p2 = reidemeister_presentation(f, H)
|
|
assert str(p2) == "((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))"
|
|
|
|
f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
|
|
H = [x]
|
|
p3 = reidemeister_presentation(f, H)
|
|
assert str(p3) == "((x_0,), (x_0**4,))"
|
|
|
|
f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
|
|
H = [x]
|
|
p4 = reidemeister_presentation(f, H)
|
|
assert str(p4) == "((x_0,), (x_0**6,))"
|
|
|
|
# this presentation can be improved, the most simplified form
|
|
# of presentation is <a, b | a^11, b^2, (a*b)^3, (a^4*b*a^-5*b)^2>
|
|
# See [2] Pg 474 group PSL_2(11)
|
|
# This is the group PSL_2(11)
|
|
F, a, b, c = free_group("a, b, c")
|
|
f = FpGroup(F, [a**11, b**5, c**4, (b*c**2)**2, (a*b*c)**3, (a**4*c**2)**3, b**2*c**-1*b**-1*c, a**4*b**-1*a**-1*b])
|
|
H = [a, b, c**2]
|
|
gens, rels = reidemeister_presentation(f, H)
|
|
assert str(gens) == "(b_1, c_3)"
|
|
assert len(rels) == 18
|
|
|
|
|
|
@slow
|
|
def test_order():
|
|
F, x, y = free_group("x, y")
|
|
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
|
assert f.order() == 8
|
|
|
|
f = FpGroup(F, [x*y*x**-1*y**-1, y**2])
|
|
assert f.order() is S.Infinity
|
|
|
|
F, a, b, c = free_group("a, b, c")
|
|
f = FpGroup(F, [a**250, b**2, c*b*c**-1*b, c**4, c**-1*a**-1*c*a, a**-1*b**-1*a*b])
|
|
assert f.order() == 2000
|
|
|
|
F, x = free_group("x")
|
|
f = FpGroup(F, [])
|
|
assert f.order() is S.Infinity
|
|
|
|
f = FpGroup(free_group('')[0], [])
|
|
assert f.order() == 1
|
|
|
|
def test_fp_subgroup():
|
|
def _test_subgroup(K, T, S):
|
|
_gens = T(K.generators)
|
|
assert all(elem in S for elem in _gens)
|
|
assert T.is_injective()
|
|
assert T.image().order() == S.order()
|
|
F, x, y = free_group("x, y")
|
|
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
|
S = FpSubgroup(f, [x*y])
|
|
assert (x*y)**-3 in S
|
|
K, T = f.subgroup([x*y], homomorphism=True)
|
|
assert T(K.generators) == [y*x**-1]
|
|
_test_subgroup(K, T, S)
|
|
|
|
S = FpSubgroup(f, [x**-1*y*x])
|
|
assert x**-1*y**4*x in S
|
|
assert x**-1*y**4*x**2 not in S
|
|
K, T = f.subgroup([x**-1*y*x], homomorphism=True)
|
|
assert T(K.generators[0]**3) == y**3
|
|
_test_subgroup(K, T, S)
|
|
|
|
f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
|
H = [x*y, x**-1*y**-1*x*y*x]
|
|
K, T = f.subgroup(H, homomorphism=True)
|
|
S = FpSubgroup(f, H)
|
|
_test_subgroup(K, T, S)
|
|
|
|
def test_permutation_methods():
|
|
F, x, y = free_group("x, y")
|
|
# DihedralGroup(8)
|
|
G = FpGroup(F, [x**2, y**8, x*y*x**-1*y])
|
|
T = G._to_perm_group()[1]
|
|
assert T.is_isomorphism()
|
|
assert G.center() == [y**4]
|
|
|
|
# DiheadralGroup(4)
|
|
G = FpGroup(F, [x**2, y**4, x*y*x**-1*y])
|
|
S = FpSubgroup(G, G.normal_closure([x]))
|
|
assert x in S
|
|
assert y**-1*x*y in S
|
|
|
|
# Z_5xZ_4
|
|
G = FpGroup(F, [x*y*x**-1*y**-1, y**5, x**4])
|
|
assert G.is_abelian
|
|
assert G.is_solvable
|
|
|
|
# AlternatingGroup(5)
|
|
G = FpGroup(F, [x**3, y**2, (x*y)**5])
|
|
assert not G.is_solvable
|
|
|
|
# AlternatingGroup(4)
|
|
G = FpGroup(F, [x**3, y**2, (x*y)**3])
|
|
assert len(G.derived_series()) == 3
|
|
S = FpSubgroup(G, G.derived_subgroup())
|
|
assert S.order() == 4
|
|
|
|
|
|
def test_simplify_presentation():
|
|
# ref #16083
|
|
G = simplify_presentation(FpGroup(FreeGroup([]), []))
|
|
assert not G.generators
|
|
assert not G.relators
|
|
|
|
|
|
def test_cyclic():
|
|
F, x, y = free_group("x, y")
|
|
f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
|
|
assert f.is_cyclic
|
|
f = FpGroup(F, [x*y, x*y**-1])
|
|
assert f.is_cyclic
|
|
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
|
assert not f.is_cyclic
|
|
|
|
|
|
def test_abelian_invariants():
|
|
F, x, y = free_group("x, y")
|
|
f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
|
|
assert f.abelian_invariants() == []
|
|
f = FpGroup(F, [x*y, x*y**-1])
|
|
assert f.abelian_invariants() == [2]
|
|
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
|
assert f.abelian_invariants() == [2, 4]
|