m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

215 lines
6.0 KiB

from sympy.combinatorics.free_groups import free_group, FreeGroup
from sympy.core import Symbol
from sympy.testing.pytest import raises
from sympy.core.numbers import oo
F, x, y, z = free_group("x, y, z")
def test_FreeGroup__init__():
x, y, z = map(Symbol, "xyz")
assert len(FreeGroup("x, y, z").generators) == 3
assert len(FreeGroup(x).generators) == 1
assert len(FreeGroup(("x", "y", "z"))) == 3
assert len(FreeGroup((x, y, z)).generators) == 3
def test_free_group():
G, a, b, c = free_group("a, b, c")
assert F.generators == (x, y, z)
assert x*z**2 in F
assert x in F
assert y*z**-1 in F
assert (y*z)**0 in F
assert a not in F
assert a**0 not in F
assert len(F) == 3
assert str(F) == '<free group on the generators (x, y, z)>'
assert not F == G
assert F.order() is oo
assert F.is_abelian == False
assert F.center() == {F.identity}
(e,) = free_group("")
assert e.order() == 1
assert e.generators == ()
assert e.elements == {e.identity}
assert e.is_abelian == True
def test_FreeGroup__hash__():
assert hash(F)
def test_FreeGroup__eq__():
assert free_group("x, y, z")[0] == free_group("x, y, z")[0]
assert free_group("x, y, z")[0] is free_group("x, y, z")[0]
assert free_group("x, y, z")[0] != free_group("a, x, y")[0]
assert free_group("x, y, z")[0] is not free_group("a, x, y")[0]
assert free_group("x, y")[0] != free_group("x, y, z")[0]
assert free_group("x, y")[0] is not free_group("x, y, z")[0]
assert free_group("x, y, z")[0] != free_group("x, y")[0]
assert free_group("x, y, z")[0] is not free_group("x, y")[0]
def test_FreeGroup__getitem__():
assert F[0:] == FreeGroup("x, y, z")
assert F[1:] == FreeGroup("y, z")
assert F[2:] == FreeGroup("z")
def test_FreeGroupElm__hash__():
assert hash(x*y*z)
def test_FreeGroupElm_copy():
f = x*y*z**3
g = f.copy()
h = x*y*z**7
assert f == g
assert f != h
def test_FreeGroupElm_inverse():
assert x.inverse() == x**-1
assert (x*y).inverse() == y**-1*x**-1
assert (y*x*y**-1).inverse() == y*x**-1*y**-1
assert (y**2*x**-1).inverse() == x*y**-2
def test_FreeGroupElm_type_error():
raises(TypeError, lambda: 2/x)
raises(TypeError, lambda: x**2 + y**2)
raises(TypeError, lambda: x/2)
def test_FreeGroupElm_methods():
assert (x**0).order() == 1
assert (y**2).order() is oo
assert (x**-1*y).commutator(x) == y**-1*x**-1*y*x
assert len(x**2*y**-1) == 3
assert len(x**-1*y**3*z) == 5
def test_FreeGroupElm_eliminate_word():
w = x**5*y*x**2*y**-4*x
assert w.eliminate_word( x, x**2 ) == x**10*y*x**4*y**-4*x**2
w3 = x**2*y**3*x**-1*y
assert w3.eliminate_word(x, x**2) == x**4*y**3*x**-2*y
assert w3.eliminate_word(x, y) == y**5
assert w3.eliminate_word(x, y**4) == y**8
assert w3.eliminate_word(y, x**-1) == x**-3
assert w3.eliminate_word(x, y*z) == y*z*y*z*y**3*z**-1
assert (y**-3).eliminate_word(y, x**-1*z**-1) == z*x*z*x*z*x
#assert w3.eliminate_word(x, y*x) == y*x*y*x**2*y*x*y*x*y*x*z**3
#assert w3.eliminate_word(x, x*y) == x*y*x**2*y*x*y*x*y*x*y*z**3
def test_FreeGroupElm_array_form():
assert (x*z).array_form == ((Symbol('x'), 1), (Symbol('z'), 1))
assert (x**2*z*y*x**-2).array_form == \
((Symbol('x'), 2), (Symbol('z'), 1), (Symbol('y'), 1), (Symbol('x'), -2))
assert (x**-2*y**-1).array_form == ((Symbol('x'), -2), (Symbol('y'), -1))
def test_FreeGroupElm_letter_form():
assert (x**3).letter_form == (Symbol('x'), Symbol('x'), Symbol('x'))
assert (x**2*z**-2*x).letter_form == \
(Symbol('x'), Symbol('x'), -Symbol('z'), -Symbol('z'), Symbol('x'))
def test_FreeGroupElm_ext_rep():
assert (x**2*z**-2*x).ext_rep == \
(Symbol('x'), 2, Symbol('z'), -2, Symbol('x'), 1)
assert (x**-2*y**-1).ext_rep == (Symbol('x'), -2, Symbol('y'), -1)
assert (x*z).ext_rep == (Symbol('x'), 1, Symbol('z'), 1)
def test_FreeGroupElm__mul__pow__():
x1 = x.group.dtype(((Symbol('x'), 1),))
assert x**2 == x1*x
assert (x**2*y*x**-2)**4 == x**2*y**4*x**-2
assert (x**2)**2 == x**4
assert (x**-1)**-1 == x
assert (x**-1)**0 == F.identity
assert (y**2)**-2 == y**-4
assert x**2*x**-1 == x
assert x**2*y**2*y**-1 == x**2*y
assert x*x**-1 == F.identity
assert x/x == F.identity
assert x/x**2 == x**-1
assert (x**2*y)/(x**2*y**-1) == x**2*y**2*x**-2
assert (x**2*y)/(y**-1*x**2) == x**2*y*x**-2*y
assert x*(x**-1*y*z*y**-1) == y*z*y**-1
assert x**2*(x**-2*y**-1*z**2*y) == y**-1*z**2*y
def test_FreeGroupElm__len__():
assert len(x**5*y*x**2*y**-4*x) == 13
assert len(x**17) == 17
assert len(y**0) == 0
def test_FreeGroupElm_comparison():
assert not (x*y == y*x)
assert x**0 == y**0
assert x**2 < y**3
assert not x**3 < y**2
assert x*y < x**2*y
assert x**2*y**2 < y**4
assert not y**4 < y**-4
assert not y**4 < x**-4
assert y**-2 < y**2
assert x**2 <= y**2
assert x**2 <= x**2
assert not y*z > z*y
assert x > x**-1
assert not x**2 >= y**2
def test_FreeGroupElm_syllables():
w = x**5*y*x**2*y**-4*x
assert w.number_syllables() == 5
assert w.exponent_syllable(2) == 2
assert w.generator_syllable(3) == Symbol('y')
assert w.sub_syllables(1, 2) == y
assert w.sub_syllables(3, 3) == F.identity
def test_FreeGroup_exponents():
w1 = x**2*y**3
assert w1.exponent_sum(x) == 2
assert w1.exponent_sum(x**-1) == -2
assert w1.generator_count(x) == 2
w2 = x**2*y**4*x**-3
assert w2.exponent_sum(x) == -1
assert w2.generator_count(x) == 5
def test_FreeGroup_generators():
assert (x**2*y**4*z**-1).contains_generators() == {x, y, z}
assert (x**-1*y**3).contains_generators() == {x, y}
def test_FreeGroupElm_words():
w = x**5*y*x**2*y**-4*x
assert w.subword(2, 6) == x**3*y
assert w.subword(3, 2) == F.identity
assert w.subword(6, 10) == x**2*y**-2
assert w.substituted_word(0, 7, y**-1) == y**-1*x*y**-4*x
assert w.substituted_word(0, 7, y**2*x) == y**2*x**2*y**-4*x