m2m模型翻译
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

49 lines
2.3 KiB

from sympy.core.numbers import Rational
from sympy.ntheory.egyptian_fraction import egyptian_fraction
from sympy.core.add import Add
from sympy.testing.pytest import raises
from sympy.core.random import random_complex_number
def test_egyptian_fraction():
def test_equality(r, alg="Greedy"):
return r == Add(*[Rational(1, i) for i in egyptian_fraction(r, alg)])
r = random_complex_number(a=0, c=1, b=0, d=0, rational=True)
assert test_equality(r)
assert egyptian_fraction(Rational(4, 17)) == [5, 29, 1233, 3039345]
assert egyptian_fraction(Rational(7, 13), "Greedy") == [2, 26]
assert egyptian_fraction(Rational(23, 101), "Greedy") == \
[5, 37, 1438, 2985448, 40108045937720]
assert egyptian_fraction(Rational(18, 23), "Takenouchi") == \
[2, 6, 12, 35, 276, 2415]
assert egyptian_fraction(Rational(5, 6), "Graham Jewett") == \
[6, 7, 8, 9, 10, 42, 43, 44, 45, 56, 57, 58, 72, 73, 90, 1806, 1807,
1808, 1892, 1893, 1980, 3192, 3193, 3306, 5256, 3263442, 3263443,
3267056, 3581556, 10192056, 10650056950806]
assert egyptian_fraction(Rational(5, 6), "Golomb") == [2, 6, 12, 20, 30]
assert egyptian_fraction(Rational(5, 121), "Golomb") == [25, 1225, 3577, 7081, 11737]
raises(ValueError, lambda: egyptian_fraction(Rational(-4, 9)))
assert egyptian_fraction(Rational(8, 3), "Golomb") == [1, 2, 3, 4, 5, 6, 7,
14, 574, 2788, 6460,
11590, 33062, 113820]
assert egyptian_fraction(Rational(355, 113)) == [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 27, 744, 893588,
1251493536607,
20361068938197002344405230]
def test_input():
r = (2,3), Rational(2, 3), (Rational(2), Rational(3))
for m in ["Greedy", "Graham Jewett", "Takenouchi", "Golomb"]:
for i in r:
d = egyptian_fraction(i, m)
assert all(i.is_Integer for i in d)
if m == "Graham Jewett":
assert d == [3, 4, 12]
else:
assert d == [2, 6]
# check prefix
d = egyptian_fraction(Rational(5, 3))
assert d == [1, 2, 6] and all(i.is_Integer for i in d)