You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
209 lines
6.2 KiB
209 lines
6.2 KiB
import functools
|
|
from typing import List
|
|
|
|
from sympy.core.basic import Basic
|
|
from sympy.core.containers import Tuple
|
|
from sympy.core.singleton import S
|
|
from sympy.core.sympify import _sympify
|
|
from sympy.simplify.simplify import simplify
|
|
from sympy.tensor.array.mutable_ndim_array import MutableNDimArray
|
|
from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray, ArrayKind
|
|
from sympy.utilities.iterables import flatten
|
|
|
|
|
|
class DenseNDimArray(NDimArray):
|
|
|
|
_array: List[Basic]
|
|
|
|
def __new__(self, *args, **kwargs):
|
|
return ImmutableDenseNDimArray(*args, **kwargs)
|
|
|
|
@property
|
|
def kind(self) -> ArrayKind:
|
|
return ArrayKind._union(self._array)
|
|
|
|
def __getitem__(self, index):
|
|
"""
|
|
Allows to get items from N-dim array.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import MutableDenseNDimArray
|
|
>>> a = MutableDenseNDimArray([0, 1, 2, 3], (2, 2))
|
|
>>> a
|
|
[[0, 1], [2, 3]]
|
|
>>> a[0, 0]
|
|
0
|
|
>>> a[1, 1]
|
|
3
|
|
>>> a[0]
|
|
[0, 1]
|
|
>>> a[1]
|
|
[2, 3]
|
|
|
|
|
|
Symbolic index:
|
|
|
|
>>> from sympy.abc import i, j
|
|
>>> a[i, j]
|
|
[[0, 1], [2, 3]][i, j]
|
|
|
|
Replace `i` and `j` to get element `(1, 1)`:
|
|
|
|
>>> a[i, j].subs({i: 1, j: 1})
|
|
3
|
|
|
|
"""
|
|
syindex = self._check_symbolic_index(index)
|
|
if syindex is not None:
|
|
return syindex
|
|
|
|
index = self._check_index_for_getitem(index)
|
|
|
|
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
|
sl_factors, eindices = self._get_slice_data_for_array_access(index)
|
|
array = [self._array[self._parse_index(i)] for i in eindices]
|
|
nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
|
|
return type(self)(array, nshape)
|
|
else:
|
|
index = self._parse_index(index)
|
|
return self._array[index]
|
|
|
|
@classmethod
|
|
def zeros(cls, *shape):
|
|
list_length = functools.reduce(lambda x, y: x*y, shape, S.One)
|
|
return cls._new(([0]*list_length,), shape)
|
|
|
|
def tomatrix(self):
|
|
"""
|
|
Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import MutableDenseNDimArray
|
|
>>> a = MutableDenseNDimArray([1 for i in range(9)], (3, 3))
|
|
>>> b = a.tomatrix()
|
|
>>> b
|
|
Matrix([
|
|
[1, 1, 1],
|
|
[1, 1, 1],
|
|
[1, 1, 1]])
|
|
|
|
"""
|
|
from sympy.matrices import Matrix
|
|
|
|
if self.rank() != 2:
|
|
raise ValueError('Dimensions must be of size of 2')
|
|
|
|
return Matrix(self.shape[0], self.shape[1], self._array)
|
|
|
|
def reshape(self, *newshape):
|
|
"""
|
|
Returns MutableDenseNDimArray instance with new shape. Elements number
|
|
must be suitable to new shape. The only argument of method sets
|
|
new shape.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import MutableDenseNDimArray
|
|
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
|
|
>>> a.shape
|
|
(2, 3)
|
|
>>> a
|
|
[[1, 2, 3], [4, 5, 6]]
|
|
>>> b = a.reshape(3, 2)
|
|
>>> b.shape
|
|
(3, 2)
|
|
>>> b
|
|
[[1, 2], [3, 4], [5, 6]]
|
|
|
|
"""
|
|
new_total_size = functools.reduce(lambda x,y: x*y, newshape)
|
|
if new_total_size != self._loop_size:
|
|
raise ValueError("Invalid reshape parameters " + newshape)
|
|
|
|
# there is no `.func` as this class does not subtype `Basic`:
|
|
return type(self)(self._array, newshape)
|
|
|
|
|
|
class ImmutableDenseNDimArray(DenseNDimArray, ImmutableNDimArray): # type: ignore
|
|
"""
|
|
|
|
"""
|
|
|
|
def __new__(cls, iterable, shape=None, **kwargs):
|
|
return cls._new(iterable, shape, **kwargs)
|
|
|
|
@classmethod
|
|
def _new(cls, iterable, shape, **kwargs):
|
|
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
|
shape = Tuple(*map(_sympify, shape))
|
|
cls._check_special_bounds(flat_list, shape)
|
|
flat_list = flatten(flat_list)
|
|
flat_list = Tuple(*flat_list)
|
|
self = Basic.__new__(cls, flat_list, shape, **kwargs)
|
|
self._shape = shape
|
|
self._array = list(flat_list)
|
|
self._rank = len(shape)
|
|
self._loop_size = functools.reduce(lambda x,y: x*y, shape, 1)
|
|
return self
|
|
|
|
def __setitem__(self, index, value):
|
|
raise TypeError('immutable N-dim array')
|
|
|
|
def as_mutable(self):
|
|
return MutableDenseNDimArray(self)
|
|
|
|
def _eval_simplify(self, **kwargs):
|
|
return self.applyfunc(simplify)
|
|
|
|
class MutableDenseNDimArray(DenseNDimArray, MutableNDimArray):
|
|
|
|
def __new__(cls, iterable=None, shape=None, **kwargs):
|
|
return cls._new(iterable, shape, **kwargs)
|
|
|
|
@classmethod
|
|
def _new(cls, iterable, shape, **kwargs):
|
|
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
|
flat_list = flatten(flat_list)
|
|
self = object.__new__(cls)
|
|
self._shape = shape
|
|
self._array = list(flat_list)
|
|
self._rank = len(shape)
|
|
self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
|
|
return self
|
|
|
|
def __setitem__(self, index, value):
|
|
"""Allows to set items to MutableDenseNDimArray.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import MutableDenseNDimArray
|
|
>>> a = MutableDenseNDimArray.zeros(2, 2)
|
|
>>> a[0,0] = 1
|
|
>>> a[1,1] = 1
|
|
>>> a
|
|
[[1, 0], [0, 1]]
|
|
|
|
"""
|
|
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
|
value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value)
|
|
for i in eindices:
|
|
other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None]
|
|
self._array[self._parse_index(i)] = value[other_i]
|
|
else:
|
|
index = self._parse_index(index)
|
|
self._setter_iterable_check(value)
|
|
value = _sympify(value)
|
|
self._array[index] = value
|
|
|
|
def as_immutable(self):
|
|
return ImmutableDenseNDimArray(self)
|
|
|
|
@property
|
|
def free_symbols(self):
|
|
return {i for j in self._array for i in j.free_symbols}
|