千问开源大模型
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

166 lines
8.0 KiB

  1. # coding:utf8
  2. import os, sys
  3. import io
  4. sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
  5. cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
  6. par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
  7. sys.path.append(cur_dir)
  8. sys.path.append(par_dir)
  9. import json
  10. from django.http import HttpResponse
  11. from text_analysis.tools import to_kafka
  12. from text_analysis.cusException import promptLen_Exception
  13. from django.views.decorators.csrf import csrf_exempt
  14. from log_util.set_logger import set_logger
  15. from openai import OpenAI
  16. logger = set_logger('logs/results.log')
  17. import traceback
  18. import queue
  19. import requests
  20. from text_analysis.tools.tool import get_content,parse_gptResult
  21. import uuid
  22. import time
  23. from kazoo.client import KazooClient
  24. from kazoo.protocol.states import EventType
  25. # openai_api_key = "EMPTY"
  26. # openai_api_base = "http://10.0.32.225:9000/v1"
  27. # client = OpenAI(api_key=openai_api_key,base_url=openai_api_base)
  28. task_queue = queue.Queue()
  29. stop_dict={}
  30. @csrf_exempt
  31. def QwenModel(request):
  32. if request.method == 'POST':
  33. try:
  34. # txt=request.body.encode("utf-8")
  35. raw_data = json.loads(request.body)
  36. task_queue.put(raw_data)
  37. return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
  38. except:
  39. logger.error(traceback.format_exc())
  40. return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
  41. else:
  42. return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
  43. def Qwen():
  44. while True:
  45. if task_queue.qsize() > 0:
  46. try:
  47. logger.info("取任务队列长度{}".format(task_queue.qsize()))
  48. raw_data = task_queue.get()
  49. output = raw_data["output"]
  50. res_tmp = {key: "" for key in output}
  51. if "id" in res_tmp.keys():
  52. res_tmp["id"] = str(uuid.uuid4())
  53. res_tmp["isLast"]=1
  54. task_id=raw_data["scenes_id"]
  55. task_version=raw_data["version"]
  56. if "data" not in raw_data.keys():
  57. logger.info("任务缺少data—{}".format(raw_data))
  58. raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "", "status": 2,"message": "未配置data内容"}
  59. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  60. raw_data["result"]["results"] = res_tmp_json
  61. to_kafka.send_kafka(raw_data, logger)
  62. else:
  63. logger.info("任务数据为:{}".format(raw_data))
  64. logger.info("当前version信息为:{}".format(stop_dict))
  65. if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
  66. logger.info("已暂停任务,数据过滤掉")
  67. continue
  68. data = get_content(raw_data, logger)
  69. prompt_len=len(data["prompt"])
  70. # if len(data["prompt"])>=10000:
  71. # raise promptLen_Exception
  72. # logger.info("请求信息为{},解析后模型请求为{}".format(raw_data,data))
  73. url="http://10.0.32.123:9000/v1/chat/completions"
  74. headers = {
  75. "Content-Type": "application/json;charset=UTF-8"
  76. }
  77. payload = json.dumps({
  78. "model":"Qwen2-72B-Instruct-GPTQ-Int4",
  79. "messages": [{"role": "user", "content": data["prompt"]}],
  80. "temperature": float(data["temperature"]),
  81. "top_p": float(data["top_p"]),
  82. "n": int(data["n"])
  83. })
  84. # logger.info("prompt为{}".format(data["prompt"]))
  85. response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
  86. logger.info("Prompt为:{}***Qwen返回值:{}-{}".format(data["prompt"],response,response.text))
  87. d = json.loads(response.text)
  88. if response.status_code==400 and "maximum context length" in d["message"]:
  89. logger.info("文本长度超过模型限制-{}-{}".format(prompt_len, raw_data))
  90. raise promptLen_Exception
  91. result = d['choices'][0]['message']['content']
  92. if result:
  93. #添加 0是文本,1是json格式
  94. fieldType = raw_data["input"]['fieldType']
  95. if fieldType == 0:
  96. res_tmp["content"] = result
  97. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  98. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
  99. else:
  100. res=parse_gptResult(res_tmp,result)
  101. if res:
  102. res["isLast"] = 1
  103. res_tmp_json = json.dumps(res, ensure_ascii=False)
  104. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
  105. else:
  106. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  107. # raw_data["result"] = {"successCode": "0", "errorLog": "Qwen返回结果不符合预期", "results": res_tmp_json,"status":2,"message":"Qwen返回结果不符合预期"}
  108. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json, "status": 1,"message": "成功"}
  109. else:
  110. logger.info("模型返回值为空")
  111. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  112. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json, "status": 1,"message": "成功"}
  113. # logger.info(raw_data)
  114. to_kafka.send_kafka(raw_data, logger)
  115. except promptLen_Exception:
  116. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  117. raw_data["result"] = {"successCode": "0", "errorLog": "", "results": res_tmp_json, "status": 2,"message": "文本长度超过模型限制"}
  118. to_kafka.send_kafka(raw_data, logger)
  119. except:
  120. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  121. raw_data["result"] = {"successCode": "0", "errorLog": traceback.format_exc(), "results": res_tmp_json,"status":2,"message":"异常"}
  122. logger.info("调用Qwen失败{}-{}".format(raw_data, traceback.format_exc()))
  123. to_kafka.send_kafka(raw_data, logger)
  124. else:
  125. logger.info("暂无任务,进入休眠--")
  126. time.sleep(10)
  127. def zk_monitoring():
  128. try:
  129. #线上环境
  130. zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
  131. #测试环境
  132. # zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
  133. zk.start()
  134. # 设置监听器
  135. @zk.DataWatch("/analyze")
  136. def watch_node(data, stat, event):
  137. if event is not None and event.type == EventType.CHANGED:
  138. data, stat = zk.get("/analyze")
  139. logger.info("执行删除操作:{}".format(data))
  140. d = json.loads(data)
  141. id = d["scenes_id"]
  142. stop_dict[id] = {}
  143. stop_dict[id]["version"] = d["version"]
  144. stop_dict[id]["operation"] = d["operation"]
  145. # 保持程序运行以监听节点变化
  146. try:
  147. while True:
  148. time.sleep(1)
  149. except:
  150. logger.info("Stopping...")
  151. # 关闭连接
  152. zk.stop()
  153. zk.close()
  154. except:
  155. logger.error(traceback.format_exc())