千问开源大模型
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

159 lines
7.7 KiB

  1. # coding:utf8
  2. import os, sys
  3. import io
  4. sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
  5. cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
  6. par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
  7. sys.path.append(cur_dir)
  8. sys.path.append(par_dir)
  9. import json
  10. from django.http import HttpResponse
  11. from text_analysis.tools import to_kafka
  12. from text_analysis.cusException import promptLen_Exception
  13. from django.views.decorators.csrf import csrf_exempt
  14. from log_util.set_logger import set_logger
  15. from openai import OpenAI
  16. logging = set_logger('logs/results.log')
  17. import traceback
  18. import queue
  19. import requests
  20. from text_analysis.tools.tool import get_content,parse_gptResult
  21. import uuid
  22. import time
  23. from kazoo.client import KazooClient
  24. from kazoo.protocol.states import EventType
  25. # openai_api_key = "EMPTY"
  26. # openai_api_base = "http://10.0.32.225:9000/v1"
  27. # client = OpenAI(api_key=openai_api_key,base_url=openai_api_base)
  28. task_queue = queue.Queue()
  29. stop_dict={}
  30. @csrf_exempt
  31. def QwenModel(request):
  32. if request.method == 'POST':
  33. try:
  34. # txt=request.body.encode("utf-8")
  35. raw_data = json.loads(request.body)
  36. task_queue.put(raw_data)
  37. return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
  38. except:
  39. logging.error(traceback.format_exc())
  40. return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
  41. else:
  42. return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
  43. def Qwen():
  44. while True:
  45. if task_queue.qsize() > 0:
  46. try:
  47. logging.info("取任务队列长度{}".format(task_queue.qsize()))
  48. raw_data = task_queue.get()
  49. output = raw_data["output"]
  50. res_tmp = {key: "" for key in output}
  51. if "id" in res_tmp.keys():
  52. res_tmp["id"] = str(uuid.uuid4())
  53. task_id=raw_data["scenes_id"]
  54. task_version=raw_data["version"]
  55. if "data" not in raw_data.keys():
  56. logging.info("任务缺少data—{}".format(raw_data))
  57. raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "", "status": 2,"message": "未配置data内容"}
  58. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  59. raw_data["result"]["results"] = res_tmp_json
  60. to_kafka.send_kafka(raw_data, logging)
  61. else:
  62. logging.info("任务数据为:{}".format(raw_data))
  63. logging.info("当前version信息为:{}".format(stop_dict))
  64. if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
  65. logging.info("已暂停任务,过滤掉。{}".format(raw_data))
  66. continue
  67. data = get_content(raw_data, logging)
  68. # logging.info("请求信息为{},解析后模型请求为{}".format(raw_data,data))
  69. url="http://10.0.32.225:9000/v1/chat/completions"
  70. headers = {
  71. "Content-Type": "application/json;charset=UTF-8"
  72. }
  73. payload = json.dumps({
  74. "model":"Qwen2-72B-Instruct-GPTQ-Int4",
  75. "messages": [{"role": "user", "content": data["prompt"]}],
  76. "temperature": float(data["temperature"]),
  77. "top_p": float(data["top_p"]),
  78. "n": int(data["n"])
  79. })
  80. # logging.info("prompt为{}".format(data["prompt"]))
  81. response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
  82. logging.info("Prompt为:{}—Qwen返回值:{}-{}".format(data["prompt"],response,response.text))
  83. d = json.loads(response.text)
  84. if response.status_code==400 and "maximum context length" in d["message"]:
  85. raise promptLen_Exception
  86. result = d['choices'][0]['message']['content']
  87. if result:
  88. #添加 0是文本,1是json格式
  89. fieldType = raw_data["input"]['fieldType']
  90. if fieldType == 0:
  91. res_tmp["content"] = result
  92. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  93. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
  94. else:
  95. res=parse_gptResult(res_tmp,result)
  96. if res:
  97. res_tmp_json = json.dumps(res, ensure_ascii=False)
  98. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
  99. else:
  100. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  101. raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回结果非json格式", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
  102. else:
  103. logging.info("模型返回值正常但为空-{}".format(raw_data))
  104. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  105. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json, "status": 1,"message": "成功"}
  106. logging.info(raw_data)
  107. to_kafka.send_kafka(raw_data, logging)
  108. except promptLen_Exception:
  109. logging.info("文本长度超过模型限制-{}".format(raw_data))
  110. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  111. raw_data["result"] = {"successCode": "0", "errorLog": "", "results": res_tmp_json, "status": 2,"message": "文本长度超过模型限制"}
  112. to_kafka.send_kafka(raw_data, logging)
  113. except:
  114. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  115. raw_data["result"] = {"successCode": "0", "errorLog": traceback.format_exc(), "results": res_tmp_json,"status":2,"message":"异常"}
  116. logging.info("调用Qwen失败{}-{}".format(raw_data, traceback.format_exc()))
  117. to_kafka.send_kafka(raw_data, logging)
  118. else:
  119. logging.info("暂无任务,进入休眠--")
  120. time.sleep(10)
  121. def zk_monitoring():
  122. try:
  123. #线上环境
  124. zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
  125. #测试环境
  126. # zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
  127. zk.start()
  128. # 设置监听器
  129. @zk.DataWatch("/analyze")
  130. def watch_node(data, stat, event):
  131. if event is not None and event.type == EventType.CHANGED:
  132. data, stat = zk.get("/analyze")
  133. logging.info("执行删除操作:{}".format(data))
  134. d = json.loads(data)
  135. id = d["scenes_id"]
  136. stop_dict[id] = {}
  137. stop_dict[id]["version"] = d["version"]
  138. stop_dict[id]["operation"] = d["operation"]
  139. # 保持程序运行以监听节点变化
  140. try:
  141. while True:
  142. time.sleep(1)
  143. except:
  144. logging.info("Stopping...")
  145. # 关闭连接
  146. zk.stop()
  147. zk.close()
  148. except:
  149. logging.error(traceback.format_exc())