千问开源大模型
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

166 lines
7.9 KiB

  1. # coding:utf8
  2. import os, sys
  3. import io
  4. sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
  5. cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
  6. par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
  7. sys.path.append(cur_dir)
  8. sys.path.append(par_dir)
  9. import json
  10. from django.http import HttpResponse
  11. from text_analysis.tools import to_kafka
  12. from text_analysis.cusException import promptLen_Exception
  13. from django.views.decorators.csrf import csrf_exempt
  14. from log_util.set_logger import set_logger
  15. from openai import OpenAI
  16. # logging = set_logger('logs/results.log')
  17. import logging
  18. logger = logging.getLogger('text')
  19. import traceback
  20. import queue
  21. import requests
  22. from text_analysis.tools.tool import get_content,parse_gptResult
  23. import uuid
  24. import time
  25. from kazoo.client import KazooClient
  26. from kazoo.protocol.states import EventType
  27. # openai_api_key = "EMPTY"
  28. # openai_api_base = "http://10.0.32.225:9000/v1"
  29. # client = OpenAI(api_key=openai_api_key,base_url=openai_api_base)
  30. task_queue = queue.Queue()
  31. stop_dict={}
  32. @csrf_exempt
  33. def QwenModel(request):
  34. if request.method == 'POST':
  35. try:
  36. # txt=request.body.encode("utf-8")
  37. raw_data = json.loads(request.body)
  38. task_queue.put(raw_data)
  39. return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
  40. except:
  41. logger.error(traceback.format_exc())
  42. return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
  43. else:
  44. return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
  45. def Qwen():
  46. while True:
  47. if task_queue.qsize() > 0:
  48. try:
  49. logger.info("取任务队列长度{}".format(task_queue.qsize()))
  50. raw_data = task_queue.get()
  51. output = raw_data["output"]
  52. res_tmp = {key: "" for key in output}
  53. if "id" in res_tmp.keys():
  54. res_tmp["id"] = str(uuid.uuid4())
  55. task_id=raw_data["scenes_id"]
  56. task_version=raw_data["version"]
  57. if "data" not in raw_data.keys():
  58. logger.info("任务缺少data—{}".format(raw_data))
  59. raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "", "status": 2,"message": "未配置data内容"}
  60. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  61. raw_data["result"]["results"] = res_tmp_json
  62. to_kafka.send_kafka(raw_data, logger)
  63. else:
  64. logger.info("任务数据为:{}".format(raw_data))
  65. logger.info("当前version信息为:{}".format(stop_dict))
  66. if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
  67. logger.info("已暂停任务,数据过滤掉")
  68. continue
  69. data = get_content(raw_data, logger)
  70. if len(data["prompt"])>=10000:
  71. raise promptLen_Exception
  72. # logger.info("请求信息为{},解析后模型请求为{}".format(raw_data,data))
  73. url="http://10.0.32.225:9000/v1/chat/completions"
  74. headers = {
  75. "Content-Type": "application/json;charset=UTF-8"
  76. }
  77. payload = json.dumps({
  78. "model":"Qwen2-72B-Instruct-GPTQ-Int4",
  79. "messages": [{"role": "user", "content": data["prompt"]}],
  80. "temperature": float(data["temperature"]),
  81. "top_p": float(data["top_p"]),
  82. "n": int(data["n"])
  83. })
  84. # logger.info("prompt为{}".format(data["prompt"]))
  85. response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
  86. logger.info("Prompt为:{}***Qwen返回值:{}-{}".format(data["prompt"],response,response.text))
  87. d = json.loads(response.text)
  88. if response.status_code==400 and "maximum context length" in d["message"]:
  89. raise promptLen_Exception
  90. result = d['choices'][0]['message']['content']
  91. if result:
  92. #添加 0是文本,1是json格式
  93. fieldType = raw_data["input"]['fieldType']
  94. if fieldType == 0:
  95. res_tmp["content"] = result
  96. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  97. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
  98. else:
  99. res=parse_gptResult(res_tmp,result)
  100. if res:
  101. res_tmp_json = json.dumps(res, ensure_ascii=False)
  102. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
  103. else:
  104. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  105. # raw_data["result"] = {"successCode": "0", "errorLog": "Qwen返回结果不符合预期", "results": res_tmp_json,"status":2,"message":"Qwen返回结果不符合预期"}
  106. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json, "status": 1,"message": "成功"}
  107. else:
  108. logger.info("模型返回值为空")
  109. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  110. raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json, "status": 1,"message": "成功"}
  111. # logger.info(raw_data)
  112. to_kafka.send_kafka(raw_data, logger)
  113. except promptLen_Exception:
  114. logger.info("文本长度超过模型限制-{}".format(raw_data))
  115. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  116. raw_data["result"] = {"successCode": "0", "errorLog": "", "results": res_tmp_json, "status": 2,"message": "文本长度超过模型限制"}
  117. to_kafka.send_kafka(raw_data, logger)
  118. except:
  119. res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
  120. raw_data["result"] = {"successCode": "0", "errorLog": traceback.format_exc(), "results": res_tmp_json,"status":2,"message":"异常"}
  121. logger.info("调用Qwen失败{}-{}".format(raw_data, traceback.format_exc()))
  122. to_kafka.send_kafka(raw_data, logger)
  123. else:
  124. logger.info("暂无任务,进入休眠--")
  125. time.sleep(10)
  126. def zk_monitoring():
  127. try:
  128. #线上环境
  129. zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
  130. #测试环境
  131. # zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
  132. zk.start()
  133. # 设置监听器
  134. @zk.DataWatch("/analyze")
  135. def watch_node(data, stat, event):
  136. if event is not None and event.type == EventType.CHANGED:
  137. data, stat = zk.get("/analyze")
  138. logger.info("执行删除操作:{}".format(data))
  139. d = json.loads(data)
  140. id = d["scenes_id"]
  141. stop_dict[id] = {}
  142. stop_dict[id]["version"] = d["version"]
  143. stop_dict[id]["operation"] = d["operation"]
  144. # 保持程序运行以监听节点变化
  145. try:
  146. while True:
  147. time.sleep(1)
  148. except:
  149. logger.info("Stopping...")
  150. # 关闭连接
  151. zk.stop()
  152. zk.close()
  153. except:
  154. logger.error(traceback.format_exc())