语音识别应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

140 lines
5.9 KiB

#coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging=set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_data
import time
from datetime import datetime
import os
#任务队列
global task_queue
task_queue = queue.Queue()
#数据队列
global data_queue
data_queue = queue.Queue()
@csrf_exempt
def ASR(request):
if request.method == 'POST':
try:
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def upload():
while True:
try:
if task_queue.qsize() >0:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
index=raw_data["metadata"]["index"]
datasource=raw_data["metadata"]["admin"]["datasource"]
if datasource not in raw_data["data"].keys():
logging.info("找不到相关数据源!—{}".format(raw_data))
continue
allFile=raw_data["data"][datasource]
currentFile=eval(allFile)[index]
file=currentFile["fileUrl"]
fileName=currentFile["fileName"]
#从gofast获取视频
myfile = requests.get(file)
starttime = datetime.now().strftime('%Y-%m-%d')
path='inputdata/'+starttime
if not os.path.exists(path):
os.makedirs(path)
with open(path+'/'+fileName, 'wb') as f:
f.write(myfile.content)
logging.info("视频从gofast下载完毕,开始上传{}".format(fileName))
#访问视频上传接口
url = "https://realtime.pdeepmatrix.com/apis/media/analysis/upload"
data = {'fromLanguage': 'zh'}
files = {'file': open(path+'/'+fileName, 'rb')}
response = requests.post(url, data=data, files=files)
d = json.loads(response.text)
if "code" in d.keys() and d["code"]==200:
#接口返回值data中存放视频获取结果的key
result = d["data"]
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": "","dataKey":result}
data_queue.put(raw_data)
logging.info("视频上传成功{}".format(raw_data))
# to_kafka.send_kafka(raw_data,logging)
else:
logging.info("视频上传失败,接口返回值{}".format(d))
else:
#暂无任务,进入休眠
time.sleep(10)
except:
logging.error(traceback.format_exc())
def getResult():
while True:
#3秒钟结果获取一次
time.sleep(3)
try:
if data_queue.qsize() >0:
logging.info("取数据队列长度{}".format(data_queue.qsize()))
raw_data = data_queue.get()
print(raw_data)
#根据视频key访问获取结果接口
dataKey=raw_data["result"]["dataKey"]
url = "https://realtime.pdeepmatrix.com/apis/media/analysis/getResult"
params = {'taskId': dataKey}
response = requests.get(url, params=params)
# print(response.text)
d = json.loads(response.text)
if "code" in d.keys() and d["code"]==200:
results=""
if d["data"]["code"]=="1":
for sentence in d["data"]["sentences"]:
results+=sentence["text"]
raw_data["result"]["results"] =results
logging.info("视频解析获取结果成功{}".format(raw_data))
to_kafka.send_kafka(raw_data, logging)
elif d["data"]["code"]=="0":
#正在解析中,将任务再次放回数据队列
data_queue.put(raw_data)
logging.info("视频未解析完毕,放回队列等待{}-{}".format(raw_data,d))
else:
#解析失败
raw_data["result"]["successCode"] = "0"
raw_data["result"]["errorLog"] = response.text
logging.info("视频解析获取结果失败,数据{},接口返回值{}".format(raw_data, d))
to_kafka.send_kafka(raw_data, logging)
else:
raw_data["result"]["successCode"] = "0"
raw_data["result"]["errorLog"]=response.text
logging.info("视频解析获取结果失败,数据{},接口返回值{}".format(raw_data,d))
to_kafka.send_kafka(raw_data, logging)
else:
#暂无任务,进入休眠
time.sleep(10)
except:
raw_data["result"]["successCode"]="0"
raw_data["result"]["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
to_kafka.send_kafka(raw_data, logging)