语音识别应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

266 lines
12 KiB

# coding:utf8
import os, sys
import io
from jsonpath_ng import jsonpath, parse
import uuid
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import parse_data
import time
from datetime import datetime
import os
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
# 任务队列
# global task_queue
task_queue = queue.Queue()
# 数据队列
# global data_queue
data_queue = queue.Queue()
stop_dict={}
@csrf_exempt
def ASRNew(request):
if request.method == 'POST':
try:
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def upload():
while True:
try:
if task_queue.qsize() > 0:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
output=raw_data["output"]
res_tmp={key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"]=str(uuid.uuid4())
logging.info("任务数据为:{}".format(raw_data))
logging.info("当前version信息为:{}".format(stop_dict))
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停任务上传,过滤掉。{}".format(raw_data))
continue
url=raw_data["input"]["fileUrl"]
if "json" in url:
parm = url.split("#")
data1 = parse_data(raw_data, parm[0])
data1_json = json.loads(data1)
expr = parse(parm[2])
match = [match.value for match in expr.find(data1_json)]
video_url = match[0]
else:
video_url = parse_data(raw_data, url)
fileName=video_url.rsplit('/')[-1]
if "http" not in video_url:
file = "https://caiji.percent.cn/" + video_url.lstrip("/")
else:
file=video_url
# name=raw_data["metadata"]["admin"]["fileName"]
# if '$.' in name:
# # json.path表达式动态获取value
# datasources = str(name).split(':')
# # 0是数据源,1是JsonPath 表达式
# datasourcestr = raw_data["data"][datasources[0]]
# datasource = json.loads(datasourcestr)
# # 创建 JsonPath 表达式对象
# expr = parse(datasources[1])
# # 使用表达式来选择 JSON 元素
# match = [match.value for match in expr.find(datasource)]
# fileName = match[0]
currentFile={"fileName":fileName,"fileUrl":file}
language = raw_data["input"]["fromLanguage"]
# 从gofast获取视频
myfile = requests.get(file)
starttime = datetime.now().strftime('%Y-%m-%d')
path = 'inputdata/' + starttime
if not os.path.exists(path):
os.makedirs(path)
with open(path + '/' + fileName, 'wb') as f:
f.write(myfile.content)
logging.info("视频从gofast下载完毕,开始上传-{}".format(fileName))
# 访问视频上传接口
# video=1视频,0音频。
video=1
if fileName[-3:]=="m4a" or fileName[-3:]=="mp3" or fileName[-3:]=="wav":
url="https://realtime.pdeepmatrix.com/apis/file/asr/upload"
video=0
else:
url = "https://realtime.pdeepmatrix.com/apis/media/analysis/upload"
data = {'fromLanguage': language}
f = open(path + '/' + fileName, 'rb')
files = {'file': f}
response = requests.post(url, data=data, files=files,verify=False)
logging.info("上传后接口返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
if "code" in d.keys() and d["code"] == 200:
# 接口返回值data中存放视频获取结果的key
result = d["data"]
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": "", "dataKey": result,"video":video,"file":currentFile}
data_queue.put(raw_data)
logging.info("视频上传成功{}".format(raw_data))
# to_kafka.send_kafka(raw_data,logging)
else:
logging.info("视频上传失败{}-{}".format(raw_data, d))
f.close()
# Todo删除视频文件
else:
# 暂无任务,进入休眠
time.sleep(10)
except:
raw_data["result"]={}
raw_data["result"]["successCode"] = "0"
raw_data["result"]["status"]=2
raw_data["result"]["message"]="视频/音频上传异常"
raw_data["result"]["errorLog"] = traceback.format_exc()
raw_data["result"]["results"] = json.dumps(res_tmp, ensure_ascii=False)
logging.error(traceback.format_exc())
to_kafka.send_kafka(raw_data, logging)
def getResult():
while True:
# 3秒钟结果获取一次
time.sleep(3)
try:
if data_queue.qsize() > 0:
logging.info("取数据队列长度{}".format(data_queue.qsize()))
raw_data = data_queue.get()
logging.info("任务数据为:{}".format(raw_data))
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停获取结果任务,过滤掉。{}".format(raw_data))
continue
output=raw_data["output"]
res_tmp={key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"]=str(uuid.uuid4())
res_tmp["isLast"]=1
res_tmp["fileName"]=raw_data["result"]["file"]["fileName"]
# 根据视频key访问获取结果接口
dataKey = raw_data["result"]["dataKey"]
params = {'taskId': dataKey}
language = raw_data["input"]["fromLanguage"]
data = {'fromLanguage': language,'taskId': dataKey}
if raw_data["result"]["video"]==1:
url = "https://realtime.pdeepmatrix.com/apis/media/analysis/getResult"
response = requests.get(url, params=params, verify=False)
else:
url ="https://realtime.pdeepmatrix.com/apis/file/asr/getResult"
response = requests.post(url, data=data, verify=False)
logging.info("ASR网站返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
if "code" in d.keys() and d["code"] == 200:
results = ""
if d["data"]["code"] == "1" and d["data"]["sentences"]:
for sentence in d["data"]["sentences"]:
if results:
results += ' ' + sentence["text"]
else:
results = sentence["text"]
if "content" in res_tmp.keys():
res_tmp["content"]=results
raw_data["result"]["results"] = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["status"]=1
raw_data["result"]["message"]="成功"
logging.info("视频解析获取结果成功{}".format(raw_data))
to_kafka.send_kafka(raw_data, logging)
elif d["data"]["code"] == "1" and not d["data"]["sentences"]:
results =""
if "content" in res_tmp.keys():
res_tmp["content"]=results
raw_data["result"]["results"] = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["status"]=1
raw_data["result"]["message"]="成功"
logging.info("视频解析获取结果成功{}".format(raw_data))
to_kafka.send_kafka(raw_data, logging)
elif d["data"]["code"] == "0":
# 正在解析中,将任务再次放回数据队列
data_queue.put(raw_data)
logging.info("视频未解析完毕,放回队列等待{}-{}".format(raw_data, d))
else:
# 解析失败
raw_data["result"]["successCode"] = "0"
raw_data["result"]["errorLog"] = response.text
raw_data["result"]["results"] = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["status"]=2
raw_data["result"]["message"]="视频/音频解析异常"
logging.info("视频解析获取结果失败,数据{},接口返回值{}".format(raw_data, d))
to_kafka.send_kafka(raw_data, logging)
else:
raw_data["result"]["successCode"] = "0"
raw_data["result"]["errorLog"] = response.text
raw_data["result"]["results"] = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["status"] = 2
raw_data["result"]["message"] = "视频/音频解析异常"
logging.info("视频解析获取结果失败,数据{},接口返回值{}".format(raw_data, d))
to_kafka.send_kafka(raw_data, logging)
else:
# 暂无任务,进入休眠
time.sleep(10)
except:
raw_data["result"]["successCode"] = "0"
raw_data["result"]["errorLog"] = traceback.format_exc()
raw_data["result"]["status"] = 2
raw_data["result"]["message"] = "视频/音频解析异常"
raw_data["result"]["results"] = json.dumps(res_tmp, ensure_ascii=False)
logging.error(traceback.format_exc())
to_kafka.send_kafka(raw_data, logging)
def zk_monitoring():
try:
#线上环境
zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
#测试环境
# zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
zk.start()
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None and event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
logging.info("执行删除操作:{}".format(data))
d = json.loads(data)
id = d["scenes_id"]
stop_dict[id] = {}
stop_dict[id]["version"] = d["version"]
stop_dict[id]["operation"] = d["operation"]
# 保持程序运行以监听节点变化
try:
while True:
time.sleep(1)
except:
logging.info("Stopping...")
# 关闭连接
zk.stop()
zk.close()
except:
logging.error(traceback.format_exc())