Browse Source

chatgpt大模型应用

master
maojian 6 months ago
commit
8dfc05848c
  1. 25
      bak/wsgi.py_20231109
  2. 14
      config.ini
  3. 0
      db.sqlite3
  4. BIN
      log_util/__pycache__/set_logger.cpython-310.pyc
  5. BIN
      log_util/__pycache__/set_logger.cpython-36.pyc
  6. 33
      log_util/set_logger.py
  7. 20
      manage.py
  8. 1
      start.sh
  9. 1
      stop_uwsgi.sh
  10. 20
      test.py
  11. 0
      text_analysis/__init__.py
  12. BIN
      text_analysis/__pycache__/__init__.cpython-310.pyc
  13. BIN
      text_analysis/__pycache__/__init__.cpython-36.pyc
  14. BIN
      text_analysis/__pycache__/__init__.cpython-38.pyc
  15. BIN
      text_analysis/__pycache__/read_config.cpython-310.pyc
  16. BIN
      text_analysis/__pycache__/settings.cpython-310.pyc
  17. BIN
      text_analysis/__pycache__/settings.cpython-36.pyc
  18. BIN
      text_analysis/__pycache__/settings.cpython-38.pyc
  19. BIN
      text_analysis/__pycache__/src.cpython-36.pyc
  20. BIN
      text_analysis/__pycache__/urls.cpython-310.pyc
  21. BIN
      text_analysis/__pycache__/urls.cpython-36.pyc
  22. BIN
      text_analysis/__pycache__/urls.cpython-38.pyc
  23. BIN
      text_analysis/__pycache__/views.cpython-310.pyc
  24. BIN
      text_analysis/__pycache__/views.cpython-36.pyc
  25. BIN
      text_analysis/__pycache__/views.cpython-38.pyc
  26. BIN
      text_analysis/__pycache__/wsgi.cpython-310.pyc
  27. BIN
      text_analysis/__pycache__/wsgi.cpython-36.pyc
  28. BIN
      text_analysis/__pycache__/wsgi.cpython-38.pyc
  29. 101
      text_analysis/bak/views-0702.py
  30. 86
      text_analysis/bak/views.py
  31. 140
      text_analysis/bak/views.py_0704
  32. 96
      text_analysis/bak/views.py_1109
  33. 100
      text_analysis/bak/views.py_1201bak
  34. 102
      text_analysis/bak/views.py_20240418
  35. 102
      text_analysis/bak/views.py_20240612
  36. 142
      text_analysis/bak/views.py_20240930
  37. 87
      text_analysis/bak/views.pyold
  38. 101
      text_analysis/bak/views_0107.py
  39. 101
      text_analysis/bak/views_0412.py
  40. 101
      text_analysis/bak/views_0415.py
  41. 142
      text_analysis/bak/views_20241021.py
  42. 10
      text_analysis/read_config.py
  43. 14
      text_analysis/request.py
  44. 148
      text_analysis/settings.py
  45. 18
      text_analysis/src.py
  46. BIN
      text_analysis/tools/__pycache__/cusException.cpython-36.pyc
  47. BIN
      text_analysis/tools/__pycache__/mysql_helper.cpython-36.pyc
  48. BIN
      text_analysis/tools/__pycache__/process.cpython-36.pyc
  49. BIN
      text_analysis/tools/__pycache__/to_kafka.cpython-310.pyc
  50. BIN
      text_analysis/tools/__pycache__/to_kafka.cpython-36.pyc
  51. BIN
      text_analysis/tools/__pycache__/to_kafka.cpython-38.pyc
  52. BIN
      text_analysis/tools/__pycache__/tool.cpython-310.pyc
  53. BIN
      text_analysis/tools/__pycache__/tool.cpython-36.pyc
  54. BIN
      text_analysis/tools/__pycache__/tool.cpython-38.pyc
  55. BIN
      text_analysis/tools/__pycache__/tools.cpython-36.pyc
  56. 74
      text_analysis/tools/bak/to_kafka.py
  57. 105
      text_analysis/tools/bak/tool.py
  58. 114
      text_analysis/tools/bak/tool.py0821
  59. 181
      text_analysis/tools/bak/tool.py1109
  60. 170
      text_analysis/tools/bak/tool.py_1107
  61. 170
      text_analysis/tools/bak/tool.py_1107_final
  62. 173
      text_analysis/tools/bak/tool.py_20240418
  63. 170
      text_analysis/tools/bak/tool_1107_final.py
  64. 25
      text_analysis/tools/cusException.py
  65. 65
      text_analysis/tools/kakfa_util.py
  66. 0
      text_analysis/tools/logs/results.log
  67. 338
      text_analysis/tools/mysql_helper.py
  68. 51
      text_analysis/tools/process.py
  69. 171
      text_analysis/tools/seleniumTest.py
  70. 25
      text_analysis/tools/to_kafka.py
  71. 74
      text_analysis/tools/to_kafka_pykafka.py
  72. 178
      text_analysis/tools/tool.py
  73. 44
      text_analysis/tools/zk_util.py
  74. 13
      text_analysis/urls.py
  75. 148
      text_analysis/views.py
  76. 148
      text_analysis/views.py_bak
  77. 142
      text_analysis/views_20241023.py
  78. 16
      text_analysis/wsgi.py
  79. 8
      uwsgi.ini
  80. 0
      wsgi.log
  81. 35
      wsgi.py
  82. 25
      wsgi.py_20231109

25
bak/wsgi.py_20231109

@ -0,0 +1,25 @@
"""
WSGI config for Zhijian_Project_WebService project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
"""
import os
import threading
from text_analysis.views import chatgpt
t = threading.Thread(target=chatgpt, name='chatgpt')
t.daemon = True
t.start()
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "text_analysis.settings")
application = get_wsgi_application()

14
config.ini

@ -0,0 +1,14 @@
[zookeeper]
;zk地址
zkhost=172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181
;节点
node=/analyze
[kafka]
;服务器地址
bootstrap_servers=172.18.1.146:9092,172.18.1.147:9092,172.18.1.148:9092
;topic
topic=produce_analyze
[gptmodel]
url=https://api.openai.com/v1/chat/completions

0
db.sqlite3

BIN
log_util/__pycache__/set_logger.cpython-310.pyc

BIN
log_util/__pycache__/set_logger.cpython-36.pyc

33
log_util/set_logger.py

@ -0,0 +1,33 @@
#coding:utf8
import logging
import os
import sys
from logging.handlers import TimedRotatingFileHandler
import re
# cur_dir = os.path.dirname( os.path.abspath(__file__)) or os.getcwd()
# sys.path.append(cur_dir + '/log_util')
def set_logger(filename):
# 创建logger对象。传入logger名字
logger = logging.getLogger(filename)
# log_path = os.path.join(cur_dir, filename)
# 设置日志记录等级
logger.setLevel(logging.INFO)
# interval 滚动周期,
# when="MIDNIGHT", interval=1 表示每天0点为更新点,每天生成一个文件
# backupCount 表示日志保存个数
file_handler = TimedRotatingFileHandler(
filename=filename, when="MIDNIGHT",encoding="utf-8", interval=1, backupCount=3
)
# filename="mylog" suffix设置,会生成文件名为mylog.2020-02-25.log
file_handler.suffix = "%Y-%m-%d.log"
# extMatch是编译好正则表达式,用于匹配日志文件名后缀
# 需要注意的是suffix和extMatch一定要匹配的上,如果不匹配,过期日志不会被删除。
file_handler.extMatch = re.compile(r"^\d{4}-\d{2}-\d{2}.log$")
# 定义日志输出格式
file_handler.setFormatter(
logging.Formatter(
"[%(asctime)s] [%(process)d] [%(levelname)s] - %(module)s.%(funcName)s (%(filename)s:%(lineno)d) - %(message)s"
)
)
logger.addHandler(file_handler)
return logger

20
manage.py

@ -0,0 +1,20 @@
#!/usr/bin/env python
import os
import sys
import threading
from text_analysis.views import chatgpt
import queue
import django
# global task_queue
# task_queue = queue.Queue()
if __name__ == "__main__":
t = threading.Thread(target=chatgpt, name='chatgpt')
t.daemon = True
t.start()
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "text_analysis.settings")
django.setup()
from django.core.management import execute_from_command_line
execute_from_command_line(sys.argv)

1
start.sh

@ -0,0 +1 @@
/opt/crawl/anaconda2/envs/py36/bin/uwsgi --ini uwsgi.ini --file wsgi.py --daemonize wsgi.log

1
stop_uwsgi.sh

@ -0,0 +1 @@
lsof -i:9012 |grep -v 'PID' | awk '{print $2}'| xargs kill -9

20
test.py
File diff suppressed because it is too large
View File

0
text_analysis/__init__.py

BIN
text_analysis/__pycache__/__init__.cpython-310.pyc

BIN
text_analysis/__pycache__/__init__.cpython-36.pyc

BIN
text_analysis/__pycache__/__init__.cpython-38.pyc

BIN
text_analysis/__pycache__/read_config.cpython-310.pyc

BIN
text_analysis/__pycache__/settings.cpython-310.pyc

BIN
text_analysis/__pycache__/settings.cpython-36.pyc

BIN
text_analysis/__pycache__/settings.cpython-38.pyc

BIN
text_analysis/__pycache__/src.cpython-36.pyc

BIN
text_analysis/__pycache__/urls.cpython-310.pyc

BIN
text_analysis/__pycache__/urls.cpython-36.pyc

BIN
text_analysis/__pycache__/urls.cpython-38.pyc

BIN
text_analysis/__pycache__/views.cpython-310.pyc

BIN
text_analysis/__pycache__/views.cpython-36.pyc

BIN
text_analysis/__pycache__/views.cpython-38.pyc

BIN
text_analysis/__pycache__/wsgi.cpython-310.pyc

BIN
text_analysis/__pycache__/wsgi.cpython-36.pyc

BIN
text_analysis/__pycache__/wsgi.cpython-38.pyc

101
text_analysis/bak/views-0702.py

@ -0,0 +1,101 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
# try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
try:
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
# logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "","status":2,"message":"异常"}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
logging.info("暂无任务,进入休眠--")
time.sleep(10)

86
text_analysis/bak/views.py

@ -0,0 +1,86 @@
#coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging=set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGpt(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
try:
if task_queue.qsize() >0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
# logging.info(raw_data)
data=get_content(raw_data,logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer "+data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user","content": data["prompt"]}],
"temperature":float(data["temperature"]),
"top_p":float(data["top_p"]),
"n":int(data["n"])
})
# response=None
response = requests.request("POST", url, headers=headers, data=payload)
# print(response)
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": result}
# print(raw_data)
logging.info(raw_data)
to_kafka.send_kafka(raw_data,logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
if response and response.text:
raw_data["result"]["errorLog"] = response.text
else:
raw_data["result"]["errorLog"] = traceback.format_exc()
logging.info(raw_data)
to_kafka.send_kafka(raw_data,logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
logging.info(traceback.format_exc())
to_kafka.send_kafka(raw_data, logging)

140
text_analysis/bak/views.py_0704

@ -0,0 +1,140 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
# global task_queue
task_queue = queue.Queue()
# global stop_dict
stop_dict={}
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
# logging.info("任务数据为:{}".format(raw_data))
logging.info("当前version信息为:{}".format(stop_dict))
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停任务,过滤掉。{}".format(raw_data))
continue
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
# logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "","status":2,"message":"异常"}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
logging.info("暂无任务,进入休眠--")
time.sleep(10)
def zk_monitoring():
try:
#线上环境
zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
#测试环境
# zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
zk.start()
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None and event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
logging.info("执行删除操作:{}".format(data))
d = json.loads(data)
id = d["scenes_id"]
stop_dict[id] = {}
stop_dict[id]["version"] = d["version"]
stop_dict[id]["operation"] = d["operation"]
# 保持程序运行以监听节点变化
try:
while True:
time.sleep(1)
except:
logging.info("Stopping...")
# 关闭连接
zk.stop()
zk.close()
except:
logging.error(traceback.format_exc())

96
text_analysis/bak/views.py_1109

@ -0,0 +1,96 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
try:
if task_queue.qsize() > 0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
data = get_content(raw_data, logging)
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload)
logging.info("GPT返回值:{}".format(response))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
# print(raw_data)
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
if response and response.text:
raw_data["result"]["errorLog"] = response.text
else:
raw_data["result"]["errorLog"] = traceback.format_exc()
logging.info("解析失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
logging.info(traceback.format_exc())
to_kafka.send_kafka(raw_data, logging)

100
text_analysis/bak/views.py_1201bak

@ -0,0 +1,100 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
try:
if task_queue.qsize() > 0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload)
logging.info("GPT返回值:{}".format(response))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
# print(raw_data)
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
if response and response.text:
raw_data["result"]["errorLog"] = response.text
else:
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"]=res_tmp_json
logging.info("解析失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info(traceback.format_exc())
to_kafka.send_kafka(raw_data, logging)

102
text_analysis/bak/views.py_20240418

@ -0,0 +1,102 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
# try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
try:
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
else:
res=parse_gptResult(res_tmp,result)
if res:
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json}
# logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
logging.info("暂无任务,进入休眠--")
time.sleep(10)

102
text_analysis/bak/views.py_20240612

@ -0,0 +1,102 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
# try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
try:
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
# logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "","status":2,"message":"异常"}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
logging.info("暂无任务,进入休眠--")
time.sleep(10)

142
text_analysis/bak/views.py_20240930

@ -0,0 +1,142 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
# global task_queue
task_queue = queue.Queue()
# global stop_dict
stop_dict={}
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
# logging.info("任务数据为:{}".format(raw_data))
logging.info("当前version信息为:{}".format(stop_dict))
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停任务,过滤掉。{}".format(raw_data))
continue
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
res_tmp["isLast"]=1
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res["isLast"]=1
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!{}".format(result), "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "","status":2,"message":"异常"}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
logging.info("暂无任务,进入休眠--")
time.sleep(10)
def zk_monitoring():
try:
#线上环境
zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
#测试环境
# zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
zk.start()
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None and event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
logging.info("执行删除操作:{}".format(data))
d = json.loads(data)
id = d["scenes_id"]
stop_dict[id] = {}
stop_dict[id]["version"] = d["version"]
stop_dict[id]["operation"] = d["operation"]
# 保持程序运行以监听节点变化
try:
while True:
time.sleep(1)
except:
logging.info("Stopping...")
# 关闭连接
zk.stop()
zk.close()
except:
logging.error(traceback.format_exc())

87
text_analysis/bak/views.pyold

@ -0,0 +1,87 @@
#coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging=set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
try:
if task_queue.qsize() >0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
# logging.info(raw_data)
data=get_content(raw_data,logging)
logging.info("问题:{}".format(data))
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer "+data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user","content": data["prompt"]}],
"temperature":float(data["temperature"]),
"top_p":float(data["top_p"]),
"n":int(data["n"])
})
# print(payload)
response = requests.request("POST", url, headers=headers, data=payload)
# print(response)
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": result}
# print(raw_data)
logging.info(raw_data)
to_kafka.send_kafka(raw_data,logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
if response and response.text:
raw_data["result"]["errorLog"] = response.text
else:
raw_data["result"]["errorLog"] = traceback.format_exc()
logging.info("解析失败{}-{}".format(raw_data,traceback.format_exc()))
to_kafka.send_kafka(raw_data,logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
logging.info(traceback.format_exc())
to_kafka.send_kafka(raw_data, logging)

101
text_analysis/bak/views_0107.py

@ -0,0 +1,101 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
# try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
try:
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
# print(raw_data)
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
# except:
# raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
# if response and response.text:
# raw_data["result"]["errorLog"] = response.text
# else:
# raw_data["result"]["errorLog"] = traceback.format_exc()
# res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
# raw_data["result"]["results"]=res_tmp_json
# logging.info("解析失败{}-{}".format(raw_data, traceback.format_exc()))
# to_kafka.send_kafka(raw_data, logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)

101
text_analysis/bak/views_0412.py

@ -0,0 +1,101 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
# try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
try:
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
# print(raw_data)
#logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
# except:
# raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
# if response and response.text:
# raw_data["result"]["errorLog"] = response.text
# else:
# raw_data["result"]["errorLog"] = traceback.format_exc()
# res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
# raw_data["result"]["results"]=res_tmp_json
# logging.info("解析失败{}-{}".format(raw_data, traceback.format_exc()))
# to_kafka.send_kafka(raw_data, logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)

101
text_analysis/bak/views_0415.py

@ -0,0 +1,101 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
global task_queue
task_queue = queue.Queue()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
# try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
try:
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加
if "content" in res_tmp.keys():
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
else:
res=parse_gptResult(res_tmp,result)
if res:
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json}
# logging.info(raw_data)
# to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
# to_kafka.send_kafka(raw_data, logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)

142
text_analysis/bak/views_20241021.py

@ -0,0 +1,142 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
# global task_queue
task_queue = queue.Queue()
# global stop_dict
stop_dict={}
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
# logging.info("任务数据为:{}".format(raw_data))
logging.info("当前version信息为:{}".format(stop_dict))
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停任务,过滤掉。{}".format(raw_data))
continue
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
res_tmp["isLast"]=1
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res["isLast"]=1
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "","status":2,"message":"异常"}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)
def zk_monitoring():
try:
#线上环境
zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
#测试环境
# zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
zk.start()
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None and event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
logging.info("执行删除操作:{}".format(data))
d = json.loads(data)
id = d["scenes_id"]
stop_dict[id] = {}
stop_dict[id]["version"] = d["version"]
stop_dict[id]["operation"] = d["operation"]
# 保持程序运行以监听节点变化
try:
while True:
time.sleep(1)
except:
logging.info("Stopping...")
# 关闭连接
zk.stop()
zk.close()
except:
logging.error(traceback.format_exc())

10
text_analysis/read_config.py

@ -0,0 +1,10 @@
import configparser
#加载配置文件
def load_config():
configFile = './config.ini'
# 创建配置文件对象
con = configparser.ConfigParser()
# 读取文件
con.read(configFile, encoding='utf-8')
return con

14
text_analysis/request.py

@ -0,0 +1,14 @@
#coding:utf8
# import leida_ner_bert_crf
import requests
url = "http://172.18.1.166:9000/leidaduikang"
payload = "{\"inputUrl\":\"/home/bfdadmin/leidabert/Project_leidaduikang/AInputdata/content_100.xlsx\"}"
headers = {'user-agent': "vscode-restclient",'header name': "header value"}
response = requests.request("POST", url, timeout=1000000,data=payload, headers=headers)
print(response.text)

148
text_analysis/settings.py

@ -0,0 +1,148 @@
"""
Django settings for Zhijian_Project_WebService project.
Generated by 'django-admin startproject' using Django 1.8.
For more information on this file, see
https://docs.djangoproject.com/en/1.8/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.8/ref/settings/
"""
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '330r)_!^qhd7$!w4)$y@4=p2bd*vlxf%4z(bx-fx-1i3txagvz'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['*']
# Application definition
INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
)
MIDDLEWARE = [
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
# 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'django.middleware.security.SecurityMiddleware',
]
ROOT_URLCONF = 'text_analysis.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'text_analysis.wsgi.application'
# Database
# https://docs.djangoproject.com/en/1.8/ref/settings/#databases
# DATABASES = {
# 'default': {
# 'ENGINE': 'django.db.backends.sqlite3',
# 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
# }
# }
# Internationalization
# https://docs.djangoproject.com/en/1.8/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'Asia/Shanghai'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/1.8/howto/static-files/
STATIC_URL = '/static/'
# U_LOGFILE_SIZE = 1 * 1024 * 1024 # 单日志文件最大100M
# U_LOGFILE_COUNT = 7 # 保留10个日志文件
#
# LOGGING = {
# 'version': 1,
# 'disable_existing_loggers': True, # 禁用所有已经存在的日志配置
# 'filters': {
# 'require_debug_false': {
# '()': 'django.utils.log.RequireDebugFalse'
# }
# },
# 'formatters': {
# 'verbose': {
# 'format': '[%(levelname)s %(asctime)s @ %(process)d] %(module)s %(process)d %(thread)d %(message)s'
# },
# 'simple': {
# 'format': '%(levelname)s %(asctime)s @ %(process)d %(message)s'
# },
# 'complete': {
# 'format': '[%(levelname)s %(asctime)s @ %(process)d] (%(pathname)s/%(funcName)s:%(lineno)d) - %(message)s'
# },
# 'online': {
# 'format': '[%(levelname)s %(asctime)s @ %(process)d] - %(message)s'
# }
# },
# 'handlers': {
# 'text': {
# 'level': 'DEBUG',
# #'class': 'logging.handlers.RotatingFileHandler',
# 'class': 'logging.handlers.TimedRotatingFileHandler',
# 'when': 'H',
# 'interval': 1,
# 'backupCount': U_LOGFILE_COUNT,
# 'formatter': 'complete',
# 'filename': os.path.join(BASE_DIR, 'logs/resultNew.log').replace('\\', '/'),
# }
# },
# 'loggers': {
# 'text': {
# 'handlers': ['text'],
# 'level': 'DEBUG',
# 'propagate': False,
# }
# }
# }

18
text_analysis/src.py

@ -0,0 +1,18 @@
# coding:utf8
# def mySql():
# try:
# db = pymysql.connect(host='172.26.28.30', user='crawl', passwd='crawl13', db='test', port=3306,
# charset='utf8', cursorclass=pymysql.cursors.DictCursor)
# if db.open:
# print("MySQL连接成功!")
# else:
# print("MySQL连接失败!")
# db.close()
# except:
# print(traceback.format_exc())
print("这是一个测试!!")

BIN
text_analysis/tools/__pycache__/cusException.cpython-36.pyc

BIN
text_analysis/tools/__pycache__/mysql_helper.cpython-36.pyc

BIN
text_analysis/tools/__pycache__/process.cpython-36.pyc

BIN
text_analysis/tools/__pycache__/to_kafka.cpython-310.pyc

BIN
text_analysis/tools/__pycache__/to_kafka.cpython-36.pyc

BIN
text_analysis/tools/__pycache__/to_kafka.cpython-38.pyc

BIN
text_analysis/tools/__pycache__/tool.cpython-310.pyc

BIN
text_analysis/tools/__pycache__/tool.cpython-36.pyc

BIN
text_analysis/tools/__pycache__/tool.cpython-38.pyc

BIN
text_analysis/tools/__pycache__/tools.cpython-36.pyc

74
text_analysis/tools/bak/to_kafka.py

@ -0,0 +1,74 @@
#coding:utf8
import traceback
from pykafka import KafkaClient
# from pykafka import partitioners
# from pykafka.simpleconsumer import OwnedPartition, OffsetType
import json
from tqdm import tqdm
# from kafka import KafkaProducer
from pykafka.simpleconsumer import OwnedPartition, OffsetType
def send_kafka(data,logging):
try:
producer = None
# client = KafkaClient(hosts='172.26.28.30:9092', socket_timeout_ms=10 * 1000)
topic = 'analyze'
# producer = client.topics[topic].get_sync_producer(**{'max_request_size': 3000012 * 5})
#producer = client.topics[topic].get_producer(sync=True)
client = KafkaClient(hosts='172.26.28.30:9092', socket_timeout_ms=10 * 1000)
# topic = client.topics['analyze']
producer = client.topics[topic].get_producer()
data1=json.dumps(data,ensure_ascii=False)
producer.produce(bytes(data1, encoding='utf-8'))
# kafkaProduce(topic,bytes(data1, encoding='utf-8'))
logging.info("数据推入kafka!")
except Exception as e:
logging.info(traceback.format_exc())
logging.info('写入kafka失败')
# def kafkaProduce(topic,resultData):
# producer = KafkaProducer(bootstrap_servers = '{}'.format("172.26.28.30:9092"))
# topics = topic.split(',')
# for tc in topics:
# future = producer.send(tc,resultData)
# producer.flush()
def consumer():
# topic = 'ais_caiji_kg_210'.encode('utf-8')
# client = KafkaClient(hosts='172.16.3.153:9092,172.16.3.154:9092,172.16.3.155:9092')
# topic = 'test_mysql_topic'.encode('utf-8')
# client = KafkaClient(hosts='localhost:9092')
# topic = client.topics[topic]
# consumer = topic.get_simple_consumer(consumer_group='test1',
# auto_commit_enable=True, # 去重消费
# auto_commit_interval_ms=1000,
# # consumer_id='test1', # 消费者ID
# reset_offset_on_start=True,
# # auto_offset_reset=OffsetType.LATEST,
# consumer_timeout_ms=100000)
# c = 0
# for msg in consumer:
# c += 1
# if msg:
# val = msg.value.decode('utf-8')
# print(c,val)
# client = KafkaClient(hosts='localhost:9092')
# topic = client.topics['test_mysql_topic']
client = KafkaClient(hosts='172.26.28.30:9092')
topic = client.topics['analyze']
consumer = topic.get_simple_consumer(consumer_group='my_consumer_group',
auto_offset_reset=OffsetType.LATEST,
reset_offset_on_start=True)
# 消费数据
for message in consumer:
if message is not None:
print(message.offset, message.value.decode())
if __name__=="__main__":
# send_kafka()
consumer()

105
text_analysis/tools/bak/tool.py

@ -0,0 +1,105 @@
#coding:utf8
import re
def get_content(inputdata,logging):
"""
:param inputdata:json数据
:return: prompt及其他参数
"""
res={}
admin=inputdata["metadata"]["admin"]
data=inputdata["data"]
prompt=admin["prompt"]
if_user=re.findall("{{(.*)}}",prompt)
if_data=re.findall("@@(.*)@@",prompt)
user_data=inputdata["metadata"]["user"]
if if_user!=[] and if_user[0] in user_data.keys():
tmp=user_data[if_user[0]]
prompt=re.sub("{{(.*)}}",tmp,prompt)
if if_data!=[] and if_data[0] in data.keys():
tmp1=data[if_data[0]]
prompt=re.sub("@@(.*)@@",tmp1,prompt)
res["prompt"]=prompt
res["authorization"]=admin["authorization"]
res["model"]=admin["model"]
res["temperature"]=admin["temperature"]
res["authorization"]=admin["authorization"]
res["top_p"]=admin["top_p"]
res["n"]=admin["n"]
return res
if __name__=="__main__":
inputdata={
"id":1,
"module":"ChatGPT",
"version":1,
"name":"信息抽取",
"describe":"此步骤进行相关信息抽取",
"metadata":{
"position":[
100,
200
],
"output":{
"output_type":"table",
"label_col":[
"文件名称",
"识别内容",
"文件路径",
"文件大小",
"上传时间",
"GPT处理结果"
]
},
"input":{
"input_type":"text",
"label":[
"3_文件名称",
"3_识别内容",
"3_文件路径",
"3_文件大小",
"3_上传时间"
]
},
"admin":{
"prompt":"下面我给出一段数据,请抽取相关内容。需抽取的内容是{{tag}}。数据为@@3_识别内容@@",
"authorization":"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",
"model":"gpt-3.5-turbo",
"temperature":"0.2",
"top_p":"1",
"N":"1",
"user_input":[
{
"keyname":"tag",
"keydesc":"需抽取内容"
}
]
},
"user":{
"tag":"专利号,专利名称,申请人"
}
},
"data":{
"3_文件名称":"测试的专利文档.pdf",
"3_识别内容":"\n证书号第2353566号\n发明专利证书\n发明名称:一种浅海大型复杂沙波区地形重构方法\n发 明 人:张华国;傅斌;何谢错;厉冬玲;史爱琴;楼璘林\n专 利 号:ZL 2015 1 0071764.4\n专利申请日:2015年02月11日 专利权人:国家海洋局第二海洋研究所 授权公告日:2017年01月18日\n本发明经过本局依照中华人民共和国专利法进行审查,决定授予专利权,颁发本证书 并在专利登记簿上予以登记-专利权自授权公告之日起生效。\n本专利的专利权期限为二十年,自申请日起算。专利权人应当依照专利法及其实施细 则规定缴纳年费。本专利的年费应当在每年02月11日前缴纳。未按照规定缴纳年费的, 专利权自应当缴纳年费期满之日起终止„\n专利证书记载专利权登记时的法律状况。专利权的转移、质押、无效、终止、恢复和 专利权人的姓名或名称、国籍、地址变更等事项记载在专利登记簿上。 \n",
"3_文件路径":"http://10.0.32.50:/data2/lybtmp/install/知识包专利/测试的专利文档.pdf",
"3_文件大小":"250KB",
"3_上传时间":1687835515
},
"next_app_id":[
],
"wait_condition":[
],
"start_tag":"false"
}
a=get_content(inputdata)
print(a)

114
text_analysis/tools/bak/tool.py0821

@ -0,0 +1,114 @@
#coding:utf8
import re
def get_content(inputdata,logging):
"""
重新组装参数
:param inputdata:原json数据
:return: 组装的prompt及其他参数
"""
res={}
admin=inputdata["metadata"]["admin"]
data=inputdata["data"]
prompt=admin["prompt"]
if_user=re.findall("{{(.*)}}",prompt)
if_data=re.findall("@@(.*)@@",prompt)
if if_user != []:
user_data=inputdata["metadata"]["user"]
if if_user[0] in user_data.keys():
tmp=user_data[if_user[0]]
prompt=re.sub("{{(.*)}}",tmp,prompt)
if if_data!=[] and if_data[0] in data.keys():
tmp1=data[if_data[0]]
prompt=re.sub("@@(.*)@@",tmp1,prompt)
res["prompt"]=prompt
res["authorization"]=admin["authorization"]
res["model"]=admin["model"]
res["temperature"]=admin["temperature"]
res["authorization"]=admin["authorization"]
res["top_p"]=admin["top_p"]
res["n"]=admin["n"]
return res
if __name__=="__main__":
inputdata={
"metadata":{
"output":{
"output_type":"table",
"label_col":[
"软件著作抽取结果"
]
},
"input":{
"input_type":"text",
"label":[
"7_软件著作过滤器"
]
},
"address":"http://172.18.1.181:9011/chatGpt/",
"admin":{
"authorization":"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",
"top_p":"1",
"user_input":[
{
"keyname":"tag",
"keydesc":""
}
],
"temperature":"0.2",
"model":"gpt-3.5-turbo-16k",
"prompt":"请在下面这句话中提取出:证书号、软件名称、著作权人,以json格式输出,找不到的字段赋值为空字符串,不要有多余的文字输出,只输出json结构。@@7_软件著作过滤器@@",
"n":"1"
},
"index":1
},
"data":{
"1_项目文件上传":"[{ \"fileUrl\":\"http://172.18.1.130:9985/group33/default/20230816/16/05/1/1-基于时间序列遥感 影像洪涝检测系统.jpg\",\"fileType\":\"jpg\", \"filePath\":\"/软件著作/1-基于时间序列遥感 影像洪涝检测系统.jpg\",\"fileId\":\"cd6592f0389bb1da25afbb44901f9cde\",\"fileName\":\"1-基于时间序列遥感 影像洪涝检测系统.jpg\" },{ \"fileUrl\":\"http://172.18.1.130:9985/group33/default/20230816/16/06/1/2-基于遥感影像的快速变化检测系统.jpg\",\"fileType\":\"jpg\", \"filePath\":\"/软件著作/2-基于遥感影像的快速变化检测系统.jpg\",\"fileId\":\"338847e34904fa96e8834cb220667db8\",\"fileName\":\"2-基于遥感影像的快速变化检测系统.jpg\" },{ \"fileUrl\":\"http://172.18.1.130:9985/group33/default/20230816/16/08/1/3-基于时空模型的遥感时间序列森林火灾检测系统.jpg\",\"fileType\":\"jpg\", \"filePath\":\"/软件著作/1/3-基于时空模型的遥感时间序列森林火灾检测系统.jpg\",\"fileId\":\"944eec1cf98f216ea953459dac4dd505\",\"fileName\":\"3-基于时空模型的遥感时间序列森林火灾检测系统.jpg\" },{ \"fileUrl\":\"http://172.18.1.130:9985/group33/default/20230816/16/09/1/4-基于隐马尔可夫模型的遥感时间序列分类系统.jpg\",\"fileType\":\"jpg\", \"filePath\":\"/软件著作/4-基于隐马尔可夫模型的遥感时间序列分类系统.jpg\",\"fileId\":\"eb378cb9ee914323f601500378dfad76\",\"fileName\":\"4-基于隐马尔可夫模型的遥感时间序列分类系统.jpg\" }]",
"2_文件分类信息":"{\"软件著作\":4}",
"3_OCR识别内容":"{\"content\":\" 22222222222222222222222222222222222222222222222222\\n中华人民共和国国家版权局\\n计算机软件著作权登记证书\\n证书号:软著登字第1623261号\\n软件名称:\\n基于遥感影像的快速变化检测系统\\nV1.0\\n著作权人:中国科学院遥感与数字地球研究所\\n开发完成日期:2016年08月01日\\n首次发表日期:未发表\\n权利取得方式:原始取得\\n权利范围:全部权利\\n登记号:2017SR037977\\n根据《计算机软件保护条例》和《计算机软件著作权登记办法》的\\n规定,经中国版权保护中心审核,对以上事项予以登记\\n计算机软件著作权\\n登记专用章\\n2017年02月10日\\nNo.01433672\",\"fileId\":\"338847e34904fa96e8834cb220667db8\",\"fileName\":\"2-基于遥感影像的快速变化检测系统.jpg\",\"filePath\":\"/软件著作/2-基于遥感影像的快速变化检测系统.jpg\",\"fileType\":\"jpg\",\"fileUrl\":\"http://172.18.1.130:9985/group33/default/20230816/16/06/1/2-基于遥感影像的快速变化检测系统.jpg\",\"pageNum\":1}",
"businessKey":"185aef3b1c810799a6be8314abf6512c",
"7_软件著作过滤器":"{\"content\":\" 22222222222222222222222222222222222222222222222222\\n中华人民共和国国家版权局\\n计算机软件著作权登记证书\\n证书号:软著登字第1623261号\\n软件名称:\\n基于遥感影像的快速变化检测系统\\nV1.0\\n著作权人:中国科学院遥感与数字地球研究所\\n开发完成日期:2016年08月01日\\n首次发表日期:未发表\\n权利取得方式:原始取得\\n权利范围:全部权利\\n登记号:2017SR037977\\n根据《计算机软件保护条例》和《计算机软件著作权登记办法》的\\n规定,经中国版权保护中心审核,对以上事项予以登记\\n计算机软件著作权\\n登记专用章\\n2017年02月10日\\nNo.01433672\",\"fileId\":\"338847e34904fa96e8834cb220667db8\",\"fileName\":\"2-基于遥感影像的快速变化检测系统.jpg\",\"filePath\":\"/软件著作/2-基于遥感影像的快速变化检测系统.jpg\",\"fileType\":\"jpg\",\"fileUrl\":\"http://172.18.1.130:9985/group33/default/20230816/16/06/1/2-基于遥感影像的快速变化检测系统.jpg\",\"pageNum\":1}"
},
"created":1691004265000,
"module":"OCR",
"start_tag":"false",
"last_edit":1692464331000,
"next_app_id":[
{
"start_id":86,
"edge_id":49,
"end_id":90
}
],
"transfer_id":11,
"blueprint_id":3,
"scenes_id":3,
"scenario":{
"dataloss":1,
"autoCommitTriggerLast":1,
"maxErrors":3,
"autoCommit":1,
"freshVariables":1
},
"wait_condition":[
],
"scheduling":{
"interval":-1,
"type":"single"
},
"name":"软件著作抽取",
"businessKey":"185aef3b1c810799a6be8314abf6512c",
"id":86,
"describe":"软件著作抽取"
}
a=get_content(inputdata,"")
print(a)

181
text_analysis/tools/bak/tool.py1109

@ -0,0 +1,181 @@
#coding:utf8
import re
from jsonpath_ng import parse
import json
import traceback
def get_content(inputdata,logging):
"""
重新组装参数
:param inputdata:原json数据
:return: 组装的prompt及其他参数
"""
res={}
admin=inputdata["metadata"]["admin"]
data=inputdata["data"]
prompt=admin["prompt"]
if_user=re.findall("{{(.*)}}",prompt)
if_data=re.findall("@@(.*?)@@",prompt)
if if_user != []:
user_data=inputdata["metadata"]["user"]
if if_user[0] in user_data.keys():
tmp=user_data[if_user[0]]
prompt=re.sub("{{(.*)}}",tmp,prompt)
if if_data!=[] :
for rule in if_data:
try:
if ':' in rule:
s=rule.split(':')
rule1=s[0]
rule2=s[1]
if rule1 in data.keys():
tmp1 = data[rule1]
#按照给定的规则解析字段
json_obj = json.loads(tmp1)
jsonpath_expr = parse(rule2)
result = str([match.value for match in jsonpath_expr.find(json_obj)][0])
rep="@@{}@@".format(rule)
#增加转义字符
rep_escaped = re.escape(rep)
prompt=re.sub(rep_escaped,result,prompt)
else:
if rule in data.keys():
tmp1=data[rule]
rep = "@@{}@@".format(rule)
prompt=re.sub(rep,tmp1,prompt)
except:
rep = "@@{}@@".format(rule)
prompt = prompt.replace(rep,'')
logging.info("动态字段获取数据失败。{}-{}".format(rule, traceback.format_exc()))
logging.info("拼接后的问题:{}".format(prompt))
res["prompt"]=prompt
res["authorization"]=admin["authorization"]
res["model"]=admin["model"]
res["temperature"]=admin["temperature"]
res["authorization"]=admin["authorization"]
res["top_p"]=admin["top_p"]
res["n"]=admin["n"]
return res
# def get_content(inputdata,logging):
# """
# 重新组装参数
# :param inputdata:原json数据
# :return: 组装的prompt及其他参数
# """
# res={}
# admin=inputdata["metadata"]["admin"]
# data=inputdata["data"]
# prompt=admin["prompt"]
# if_user=re.findall("{{(.*)}}",prompt)
# if_data=re.findall("@@(.*)@@",prompt)
# if if_user != []:
# user_data=inputdata["metadata"]["user"]
# if if_user[0] in user_data.keys():
# tmp=user_data[if_user[0]]
# prompt=re.sub("{{(.*)}}",tmp,prompt)
# if if_data!=[] and if_data[0] in data.keys():
# tmp1=data[if_data[0]]
# prompt=re.sub("@@(.*)@@",tmp1,prompt)
# res["prompt"]=prompt
# res["authorization"]=admin["authorization"]
# res["model"]=admin["model"]
# res["temperature"]=admin["temperature"]
# res["authorization"]=admin["authorization"]
# res["top_p"]=admin["top_p"]
# res["n"]=admin["n"]
# return res
if __name__=="__main__":
prompt = "用@@11_任务拆分:$.lang@@,生成@@11_任务拆分:$.quantity@@条@@11_任务拆分:$.age@@的@@11_任务拆分:$.sex@@发布@@11_任务拆分:$.emotion@@的@@11_任务拆分:$.subject@@的@@11_任务拆分:$.content_type@@。以JSON数组泛型是String类型的格式进行输出,结构外层需要用“resultList”进行接收,不用多余的文字。"
if_data = re.findall("@@(.*?)@@", prompt)
print(if_data)
# inputdata={
# "metadata":{
# "output":{
# "output_type":"table",
# "label_col":[
# "相似内容抽取"
# ]
# },
# "input":{
# "input_type":"text",
# "label":[
# "3_相似内容过滤器"
# ]
# },
# "address":"http://172.18.1.181:9011/chatGpt/",
# "admin":{
# "authorization":"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",
# "top_p":"1",
# "user_input":[
# {
# "keyname":"tag",
# "keydesc":""
# }
# ],
# "temperature":"1",
# "model":"gpt-3.5-turbo-16k",
# "prompt":"以JSON数组泛型是String类型的格式进行输出,不用多余的文字。参考”@@11_任务拆分:$.quantity@@不仅仅是一种工具,更是一种改变世界的力量“生成@@11_任务拆分:$.quantity@@条@@11_任务拆分:$.lang@@的@@11_任务拆分:$.content_type@@",
# "n":"1"
# },
# "index":3,
# "user":{
# "tag":""
# }
# },
# "data":{
# "10_任务提取":"[{\"age\":\"18~24岁\",\"collection_element\":\"0,1\",\"collection_quantity\":1438,\"collection_task\":\"https://twitter.com/MFA_China\",\"collection_type\":0,\"content_type\":\"发帖内容\",\"create_user_id\":\"652468062228768915\",\"del\":0,\"emotion\":\"积极/乐观\",\"id\":178,\"lang\":\"英语\",\"model_status\":1,\"model_type\":1,\"name\":\"TW用户-发言办公室01-04~12-31\",\"quantity\":10,\"sex\":\"男性\",\"site_id\":181,\"status\":0,\"subject\":\"社会问题和时事主题\",\"tenant_id\":237,\"type\":1},{\"age\":\"18~24岁\",\"collection_element\":\"0,1\",\"collection_quantity\":444378,\"collection_task\":\"hongkong\",\"collection_type\":1,\"content_type\":\"发帖内容\",\"create_user_id\":\"652468062228768915\",\"del\":0,\"emotion\":\"积极/乐观\",\"id\":179,\"lang\":\"英语\",\"model_status\":1,\"model_type\":1,\"name\":\"TW关键词-hongkong01-04~12-31\",\"quantity\":10,\"sex\":\"女性\",\"site_id\":181,\"status\":0,\"subject\":\"旅行和探险主题\",\"tenant_id\":237,\"type\":1},{\"age\":\"18~24岁\",\"collection_element\":\"0,1\",\"collection_quantity\":256,\"collection_task\":\"https://www.facebook.com/tsaiingwen\",\"collection_type\":0,\"content_type\":\"发帖内容\",\"create_user_id\":\"652468062228768915\",\"del\":0,\"emotion\":\"积极/乐观\",\"id\":180,\"lang\":\"英语\",\"model_status\":1,\"model_type\":2,\"name\":\"FB用户-蔡英文-01-04~12-31\",\"quantity\":10,\"sex\":\"男性\",\"site_id\":182,\"status\":0,\"subject\":\"科技和创新主题\",\"tenant_id\":237,\"type\":1},{\"age\":\"18~24岁\",\"collection_element\":\"0,1\",\"collection_quantity\":1253,\"collection_task\":\"台湾新闻\",\"collection_type\":1,\"content_type\":\"发帖内容\",\"create_user_id\":\"652468062228768915\",\"del\":0,\"emotion\":\"积极/乐观\",\"id\":183,\"lang\":\"英语\",\"model_status\":1,\"model_type\":2,\"name\":\"FB关键词-台湾新闻-0110~12-13\",\"quantity\":10,\"sex\":\"女性\",\"site_id\":182,\"status\":0,\"subject\":\"健康和生活方式主题\",\"tenant_id\":237,\"type\":1}]",
# "3_相似内容过滤器":"{\"age\":\"18~24岁\",\"collection_element\":\"0,1\",\"collection_quantity\":1253,\"collection_task\":\"台湾新闻\",\"collection_type\":1,\"content_type\":\"发帖内容\",\"create_user_id\":\"652468062228768915\",\"del\":0,\"emotion\":\"积极/乐观\",\"id\":183,\"lang\":\"英语\",\"model_status\":1,\"model_type\":2,\"name\":\"FB关键词-台湾新闻-0110~12-13\",\"quantity\":10,\"sex\":\"女性\",\"site_id\":182,\"size\":21,\"status\":0,\"subject\":\"健康和生活方式主题\",\"tenant_id\":237,\"type\":1}",
# "11_任务拆分":"{\"tenant_id\":237,\"create_user_id\":\"652468062228768915\",\"collection_quantity\":1253,\"quantity\":10,\"subject\":\"健康和生活方式主题\",\"sex\":\"女性\",\"model_type\":2,\"del\":0,\"type\":1,\"collection_element\":\"0,1\",\"collection_type\":1,\"model_status\":1,\"collection_task\":\"台湾新闻\",\"emotion\":\"积极/乐观\",\"content_type\":\"发帖内容\",\"size\":21,\"name\":\"FB关键词-台湾新闻-0110~12-13\",\"site_id\":182,\"id\":183,\"lang\":\"英语\",\"age\":\"18~24岁\",\"status\":0}",
# "1_mysql数据查询":"{\"resultList\": [{\"id\": 178, \"tenant_id\": 237, \"name\": \"TW用户-发言办公室01-04~12-31\", \"site_id\": 181, \"collection_type\": 0, \"collection_element\": \"0,1\", \"collection_task\": \"https://twitter.com/MFA_China\", \"status\": 0, \"collection_quantity\": 1438, \"create_user\": null, \"create_user_id\": \"652468062228768915\", \"update_user\": null, \"update_user_id\": null, \"del\": 0, \"type\": 1, \"model_type\": 1, \"quantity\": 10, \"content_type\": \"发帖内容\", \"model_status\": 1, \"lang\": \"英语\", \"age\": \"18~24岁\", \"sex\": \"男性\", \"emotion\": \"积极/乐观\", \"subject\": \"社会问题和时事主题\", \"similar_content\": null}, {\"id\": 179, \"tenant_id\": 237, \"name\": \"TW关键词-hongkong01-04~12-31\", \"site_id\": 181, \"collection_type\": 1, \"collection_element\": \"0,1\", \"collection_task\": \"hongkong\", \"status\": 0, \"collection_quantity\": 444378, \"create_user\": null, \"create_user_id\": \"652468062228768915\", \"update_user\": null, \"update_user_id\": null, \"del\": 0, \"type\": 1, \"model_type\": 1, \"quantity\": 10, \"content_type\": \"发帖内容\", \"model_status\": 1, \"lang\": \"英语\", \"age\": \"18~24岁\", \"sex\": \"女性\", \"emotion\": \"积极/乐观\", \"subject\": \"旅行和探险主题\", \"similar_content\": null}, {\"id\": 180, \"tenant_id\": 237, \"name\": \"FB用户-蔡英文-01-04~12-31\", \"site_id\": 182, \"collection_type\": 0, \"collection_element\": \"0,1\", \"collection_task\": \"https://www.facebook.com/tsaiingwen\", \"status\": 0, \"collection_quantity\": 256, \"create_user\": null, \"create_user_id\": \"652468062228768915\", \"update_user\": null, \"update_user_id\": null, \"del\": 0, \"type\": 1, \"model_type\": 2, \"quantity\": 10, \"content_type\": \"发帖内容\", \"model_status\": 1, \"lang\": \"英语\", \"age\": \"18~24岁\", \"sex\": \"男性\", \"emotion\": \"积极/乐观\", \"subject\": \"科技和创新主题\", \"similar_content\": null}, {\"id\": 183, \"tenant_id\": 237, \"name\": \"FB关键词-台湾新闻-0110~12-13\", \"site_id\": 182, \"collection_type\": 1, \"collection_element\": \"0,1\", \"collection_task\": \"台湾新闻\", \"status\": 0, \"collection_quantity\": 1253, \"create_user\": null, \"create_user_id\": \"652468062228768915\", \"update_user\": null, \"update_user_id\": null, \"del\": 0, \"type\": 1, \"model_type\": 2, \"quantity\": 10, \"content_type\": \"发帖内容\", \"model_status\": 1, \"lang\": \"英语\", \"age\": \"18~24岁\", \"sex\": \"女性\", \"emotion\": \"积极/乐观\", \"subject\": \"健康和生活方式主题\", \"similar_content\": null}]}"
# },
# "created":1691004265000,
# "module":"ChatGPT",
# "start_tag":"false",
# "multi_branch":0,
# "last_edit":1693932236000,
# "next_app_id":[
# {
# "start_id":188,
# "edge_id":92,
# "end_id":190
# }
# ],
# "transfer_id":5,
# "version":1,
# "blueprint_id":6,
# "scenes_id":7,
# "scenario":{
# "dataloss":1,
# "autoCommitTriggerLast":1,
# "maxErrors":3,
# "autoCommit":1,
# "freshVariables":1
# },
# "wait_condition":[
#
# ],
# "scheduling":{
# "interval":-1,
# "type":"single"
# },
# "name":"相似内容抽取",
# "id":188,
# "position":[
# 100,
# 200
# ],
# "describe":"相似内容抽取"
# }
# a=get_content(inputdata,"")
# print(a)

170
text_analysis/tools/bak/tool.py_1107

@ -0,0 +1,170 @@
#coding:utf8
import re
from jsonpath_ng import parse
import json
import traceback
def parse_data(raw_data,para):
all_result = raw_data['data']
param_split = str(para).split(":")
datasourcestr = all_result[param_split[0]]
datasource = json.loads(datasourcestr)
# 创建 JsonPath 表达式对象
expr = parse(param_split[1])
# 使用表达式来选择 JSON 元素
match = [match.value for match in expr.find(datasource)]
val = match[0]
return val
def get_content(inputdata,logging):
"""
重新组装参数
:param inputdata:原json数据
:return: 组装的prompt及其他参数
"""
res={}
input=inputdata["input"]
data=inputdata["data"]
prompt=input["prompt"]
if_data=re.findall("@@(.*?)@@",prompt)
# if_user=re.findall("{{(.*)}}",prompt)
# if if_user != []:
# user_data=inputdata["metadata"]["user"]
# if if_user[0] in user_data.keys():
# tmp=user_data[if_user[0]]
# prompt=re.sub("{{(.*)}}",tmp,prompt)
if if_data!=[] :
for rule in if_data:
try:
if "#json#" in rule:
parm = rule.split("#json#")
data1 = parse_data(inputdata, parm[0])
data1_json = json.loads(data1)
expr = parse(parm[1])
result = str([match.value for match in expr.find(data1_json)][0])
rep = "@@{}@@".format(rule)
# 增加转义字符
rep_escaped = re.escape(rep)
prompt = re.sub(rep_escaped, result, prompt)
elif ":" in rule:
result = parse_data(inputdata, rule)
rep = "@@{}@@".format(rule)
rep_escaped = re.escape(rep)
prompt = re.sub(rep_escaped, result, prompt)
else:
if rule in data.keys():
tmp1=data[rule]
rep = "@@{}@@".format(rule)
prompt=re.sub(rep,tmp1,prompt)
except:
# print(traceback.format_exc())
rep = "@@{}@@".format(rule)
prompt = prompt.replace(rep,'')
logging.info("动态字段获取数据失败。{}-{}".format(rule, traceback.format_exc()))
logging.info("拼接后的问题:{}".format(prompt))
res["prompt"]=prompt
res["authorization"]=input["authorization"]
res["model"]=input["model"]
res["temperature"]=input["temperature"]
res["authorization"]=input["authorization"]
res["top_p"]=input["top_p"]
res["n"]=input["n"]
return res
# def get_content(inputdata,logging):
# """
# 重新组装参数
# :param inputdata:原json数据
# :return: 组装的prompt及其他参数
# """
# res={}
# admin=inputdata["metadata"]["admin"]
# data=inputdata["data"]
# prompt=admin["prompt"]
# if_user=re.findall("{{(.*)}}",prompt)
# if_data=re.findall("@@(.*)@@",prompt)
# if if_user != []:
# user_data=inputdata["metadata"]["user"]
# if if_user[0] in user_data.keys():
# tmp=user_data[if_user[0]]
# prompt=re.sub("{{(.*)}}",tmp,prompt)
# if if_data!=[] and if_data[0] in data.keys():
# tmp1=data[if_data[0]]
# prompt=re.sub("@@(.*)@@",tmp1,prompt)
# res["prompt"]=prompt
# res["authorization"]=admin["authorization"]
# res["model"]=admin["model"]
# res["temperature"]=admin["temperature"]
# res["authorization"]=admin["authorization"]
# res["top_p"]=admin["top_p"]
# res["n"]=admin["n"]
# return res
if __name__=="__main__":
inputdata={
"output":{
"id":"id",
"content":"content"
},
"address":"http://172.18.1.181:9011/chatGpt/",
"input":{
"authorization":"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",
"top_p":"1",
"temperature":"1",
"model":"gpt-3.5-turbo-16k",
"prompt":"根据下面内容:@@1_Youtube采集:$['content']#json#$['test1']@@。生成一条@@1_Youtube采集:$['Count']@@字的关于中国正面的新闻,标题用title,内容用content,以json格式输出。",
"n":"1"
},
"data":{
"1_Youtube采集":"{\"isDownload\":\"true\",\"content\":\"{\\\"test1\\\":\\\"22222\\\"}\",\"Count\":\"555\"}"
},
"created":1691004265000,
"module":"ChatGPT",
"start_tag":"false",
"multi_branch":0,
"last_edit":1698927821000,
"next_app_id":[
{
"start_id":316,
"edge_id":200,
"end_id":317
}
],
"transfer_id":3,
"version":1,
"blueprint_id":12,
"scenes_id":12,
"scenario":{
"dataloss":1,
"autoCommitTriggerLast":1,
"maxErrors":3,
"autoCommit":1,
"freshVariables":1
},
"wait_condition":[
],
"scheduling":{
"interval":-1,
"type":"single"
},
"name":"正面引导",
"businessKey":"78278a5168e45304",
"id":316,
"position":[
100,
200
],
"describe":"正面引导"
}
a=get_content(inputdata,"")
print(a)

170
text_analysis/tools/bak/tool.py_1107_final

@ -0,0 +1,170 @@
#coding:utf8
import re
from jsonpath_ng import parse
import json
import traceback
def parse_data(raw_data,para):
all_result = raw_data['data']
param_split = str(para).split(":")
datasourcestr = all_result[param_split[0]]
datasource = json.loads(datasourcestr)
# 创建 JsonPath 表达式对象
expr = parse(param_split[1])
# 使用表达式来选择 JSON 元素
match = [match.value for match in expr.find(datasource)]
val = match[0]
return val
def get_content(inputdata,logging):
"""
重新组装参数
:param inputdata:原json数据
:return: 组装的prompt及其他参数
"""
res={}
input=inputdata["input"]
data=inputdata["data"]
prompt=input["prompt"]
if_data=re.findall("@@(.*?)@@",prompt)
# if_user=re.findall("{{(.*)}}",prompt)
# if if_user != []:
# user_data=inputdata["metadata"]["user"]
# if if_user[0] in user_data.keys():
# tmp=user_data[if_user[0]]
# prompt=re.sub("{{(.*)}}",tmp,prompt)
if if_data!=[] :
for rule in if_data:
try:
if "#json#" in rule:
parm = rule.split("#json#")
data1 = parse_data(inputdata, parm[0])
data1_json = json.loads(data1)
expr = parse(parm[1])
result = str([match.value for match in expr.find(data1_json)][0])
rep = "@@{}@@".format(rule)
# 增加转义字符
rep_escaped = re.escape(rep)
prompt = re.sub(rep_escaped, result, prompt)
elif ":" in rule:
result = parse_data(inputdata, rule)
rep = "@@{}@@".format(rule)
rep_escaped = re.escape(rep)
prompt = re.sub(rep_escaped, result, prompt)
else:
if rule in data.keys():
tmp1=data[rule]
rep = "@@{}@@".format(rule)
prompt=re.sub(rep,tmp1,prompt)
except:
# print(traceback.format_exc())
rep = "@@{}@@".format(rule)
prompt = prompt.replace(rep,'')
logging.info("动态字段获取数据失败。{}-{}".format(rule, traceback.format_exc()))
logging.info("拼接后的问题:{}".format(prompt))
res["prompt"]=prompt
res["authorization"]=input["authorization"]
res["model"]=input["model"]
res["temperature"]=input["temperature"]
res["authorization"]=input["authorization"]
res["top_p"]=input["top_p"]
res["n"]=input["n"]
return res
# def get_content(inputdata,logging):
# """
# 重新组装参数
# :param inputdata:原json数据
# :return: 组装的prompt及其他参数
# """
# res={}
# admin=inputdata["metadata"]["admin"]
# data=inputdata["data"]
# prompt=admin["prompt"]
# if_user=re.findall("{{(.*)}}",prompt)
# if_data=re.findall("@@(.*)@@",prompt)
# if if_user != []:
# user_data=inputdata["metadata"]["user"]
# if if_user[0] in user_data.keys():
# tmp=user_data[if_user[0]]
# prompt=re.sub("{{(.*)}}",tmp,prompt)
# if if_data!=[] and if_data[0] in data.keys():
# tmp1=data[if_data[0]]
# prompt=re.sub("@@(.*)@@",tmp1,prompt)
# res["prompt"]=prompt
# res["authorization"]=admin["authorization"]
# res["model"]=admin["model"]
# res["temperature"]=admin["temperature"]
# res["authorization"]=admin["authorization"]
# res["top_p"]=admin["top_p"]
# res["n"]=admin["n"]
# return res
if __name__=="__main__":
inputdata={
"output":{
"id":"id",
"content":"content"
},
"address":"http://172.18.1.181:9011/chatGpt/",
"input":{
"authorization":"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",
"top_p":"1",
"temperature":"1",
"model":"gpt-3.5-turbo-16k",
"prompt":"根据下面内容:@@1_Youtube采集:$['content']#json#$['test1']@@。生成一条@@1_Youtube采集:$['Count']@@字的关于中国正面的新闻,标题用title,内容用content,以json格式输出。",
"n":"1"
},
"data":{
"1_Youtube采集":"{\"isDownload\":\"true\",\"content\":\"{\\\"test1\\\":\\\"22222\\\"}\",\"Count\":\"555\"}"
},
"created":1691004265000,
"module":"ChatGPT",
"start_tag":"false",
"multi_branch":0,
"last_edit":1698927821000,
"next_app_id":[
{
"start_id":316,
"edge_id":200,
"end_id":317
}
],
"transfer_id":3,
"version":1,
"blueprint_id":12,
"scenes_id":12,
"scenario":{
"dataloss":1,
"autoCommitTriggerLast":1,
"maxErrors":3,
"autoCommit":1,
"freshVariables":1
},
"wait_condition":[
],
"scheduling":{
"interval":-1,
"type":"single"
},
"name":"正面引导",
"businessKey":"78278a5168e45304",
"id":316,
"position":[
100,
200
],
"describe":"正面引导"
}
a=get_content(inputdata,"")
print(a)

173
text_analysis/tools/bak/tool.py_20240418
File diff suppressed because it is too large
View File

170
text_analysis/tools/bak/tool_1107_final.py

@ -0,0 +1,170 @@
#coding:utf8
import re
from jsonpath_ng import parse
import json
import traceback
def parse_data(raw_data,para):
all_result = raw_data['data']
param_split = str(para).split(":")
datasourcestr = all_result[param_split[0]]
datasource = json.loads(datasourcestr)
# 创建 JsonPath 表达式对象
expr = parse(param_split[1])
# 使用表达式来选择 JSON 元素
match = [match.value for match in expr.find(datasource)]
val = match[0]
return val
def get_content(inputdata,logging):
"""
:param inputdata:json数据
:return: prompt及其他参数
"""
res={}
input=inputdata["input"]
data=inputdata["data"]
prompt=input["prompt"]
if_data=re.findall("@@(.*?)@@",prompt)
# if_user=re.findall("{{(.*)}}",prompt)
# if if_user != []:
# user_data=inputdata["metadata"]["user"]
# if if_user[0] in user_data.keys():
# tmp=user_data[if_user[0]]
# prompt=re.sub("{{(.*)}}",tmp,prompt)
if if_data!=[] :
for rule in if_data:
try:
if "#json#" in rule:
parm = rule.split("#json#")
data1 = parse_data(inputdata, parm[0])
data1_json = json.loads(data1)
expr = parse(parm[1])
result = str([match.value for match in expr.find(data1_json)][0])
rep = "@@{}@@".format(rule)
# 增加转义字符
rep_escaped = re.escape(rep)
prompt = re.sub(rep_escaped, result, prompt)
elif ":" in rule:
result = parse_data(inputdata, rule)
rep = "@@{}@@".format(rule)
rep_escaped = re.escape(rep)
prompt = re.sub(rep_escaped, result, prompt)
else:
if rule in data.keys():
tmp1=data[rule]
rep = "@@{}@@".format(rule)
prompt=re.sub(rep,tmp1,prompt)
except:
# print(traceback.format_exc())
rep = "@@{}@@".format(rule)
prompt = prompt.replace(rep,'')
logging.info("动态字段获取数据失败。{}-{}".format(rule, traceback.format_exc()))
logging.info("拼接后的问题:{}".format(prompt))
res["prompt"]=prompt
res["authorization"]=input["authorization"]
res["model"]=input["model"]
res["temperature"]=input["temperature"]
res["authorization"]=input["authorization"]
res["top_p"]=input["top_p"]
res["n"]=input["n"]
return res
# def get_content(inputdata,logging):
# """
# 重新组装参数
# :param inputdata:原json数据
# :return: 组装的prompt及其他参数
# """
# res={}
# admin=inputdata["metadata"]["admin"]
# data=inputdata["data"]
# prompt=admin["prompt"]
# if_user=re.findall("{{(.*)}}",prompt)
# if_data=re.findall("@@(.*)@@",prompt)
# if if_user != []:
# user_data=inputdata["metadata"]["user"]
# if if_user[0] in user_data.keys():
# tmp=user_data[if_user[0]]
# prompt=re.sub("{{(.*)}}",tmp,prompt)
# if if_data!=[] and if_data[0] in data.keys():
# tmp1=data[if_data[0]]
# prompt=re.sub("@@(.*)@@",tmp1,prompt)
# res["prompt"]=prompt
# res["authorization"]=admin["authorization"]
# res["model"]=admin["model"]
# res["temperature"]=admin["temperature"]
# res["authorization"]=admin["authorization"]
# res["top_p"]=admin["top_p"]
# res["n"]=admin["n"]
# return res
if __name__=="__main__":
inputdata={
"output":{
"id":"id",
"content":"content"
},
"address":"http://172.18.1.181:9011/chatGpt/",
"input":{
"authorization":"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",
"top_p":"1",
"temperature":"1",
"model":"gpt-3.5-turbo-16k",
"prompt":"根据下面内容:@@1_Youtube采集:$['content']#json#$['test1']@@。生成一条@@1_Youtube采集:$['Count']@@字的关于中国正面的新闻,标题用title,内容用content,以json格式输出。",
"n":"1"
},
"data":{
"1_Youtube采集":"{\"isDownload\":\"true\",\"content\":\"{\\\"test1\\\":\\\"22222\\\"}\",\"Count\":\"555\"}"
},
"created":1691004265000,
"module":"ChatGPT",
"start_tag":"false",
"multi_branch":0,
"last_edit":1698927821000,
"next_app_id":[
{
"start_id":316,
"edge_id":200,
"end_id":317
}
],
"transfer_id":3,
"version":1,
"blueprint_id":12,
"scenes_id":12,
"scenario":{
"dataloss":1,
"autoCommitTriggerLast":1,
"maxErrors":3,
"autoCommit":1,
"freshVariables":1
},
"wait_condition":[
],
"scheduling":{
"interval":-1,
"type":"single"
},
"name":"正面引导",
"businessKey":"78278a5168e45304",
"id":316,
"position":[
100,
200
],
"describe":"正面引导"
}
a=get_content(inputdata,"")
print(a)

25
text_analysis/tools/cusException.py

@ -0,0 +1,25 @@
# -*- coding:utf-8 -*-
class pt_v_Exception(Exception):
def __str__(self):
return 'pt规则未在缓存中命中'
class dt_v_Exception(Exception):
def __str__(self):
return 'dt规则未在缓存中命中'
class dt_v_attr_Exception(Exception):
def __str__(self):
return 'dt_attrcode规则未在缓存中命中'
class dt_v_codeid_Exception(Exception):
def __str__(self):
return 'dt_codeid规则未在缓存中命中'
class dt_v_senti_Exception(Exception):
def __str__(self):
return 'dt_senti规则未在缓存中命中'
class dt_v_res_Exception(Exception):
def __str__(self):
return 'dt_resverse规则未在缓存中命中'

65
text_analysis/tools/kakfa_util.py

@ -0,0 +1,65 @@
# coding=utf-8
from kafka import KafkaProducer
from kafka import KafkaConsumer
import json
import traceback
import time
import traceback
import datetime
import queue
from logUtil import get_logger
"""
kafka
"""
def kafkaProduce(topic,resultData,address):
producer = KafkaProducer(bootstrap_servers = '{}'.format(address),request_timeout_ms=120000)
topics = topic.split(',')
for tc in topics:
future = producer.send(tc,resultData)
result = future.get(timeout=60)
producer.flush()
print (result)
#写入文件
def writeTxt(filePath,result):
f = open(filePath,'a',encoding='utf-8')
f.write(result.encode('utf-8').decode('unicode_escape')+'\n')
f.close
def KafkaConsume(topic,address,group_id,task_queue,logger):
'''
kafka
:param topic:
:param address:
:param group_id:
:param task_queue:
:return:
'''
try:
consumer = KafkaConsumer(topic, auto_offset_reset='earliest',fetch_max_bytes=1024768000,fetch_max_wait_ms=5000, bootstrap_servers=address,group_id = group_id)
i = 1
while True:
for msg in consumer:
print('第{}条数据'.format(i))
data = str(msg.value, encoding = "utf-8")
print(data)
task_queue.put(data)
i = i+1
else:
print('暂无任务------')
time.sleep(10)
except Exception as e:
print('kafka未知异常----')
traceback.print_exc()
def writeTxt(filePath,result):
f = open(filePath,'a')
f.write(result+'\n')
f.close
if __name__ == '__main__':
resultData = {'id': '中文', 'url': 'https://zh.wikipedia.org/zh/%E8%94%A1%E8%8B%B1%E6%96%87'}
kafkaProduce('test', json.dumps(resultData).encode('utf-8').decode('unicode_escape').encode(),'172.26.28.30:9092')
#task_queue = queue.Queue()
#KafkaConsume('fq-Taobao-eccontent','39.129.129.172:6666,39.129.129.172:6668,39.129.129.172:6669,39.129.129.172:6670,39.129.129.172:6671','news_sche_8',task_queue,logger)
# KafkaConsume('zxbnewstopic','120.133.14.71:9992','group3',task_queue,logger)

0
text_analysis/tools/logs/results.log

338
text_analysis/tools/mysql_helper.py

@ -0,0 +1,338 @@
# coding:utf8
import os, sys
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
import re
# from log_util.set_logger import set_logger
# logging = set_logger('logs/error.log')
import pymysql.cursors
import traceback
def mysqlConn(data,logging):
res={"successCode":"1","errorLog":"","results":""}
p_host=data["Host"]
p_port=int(data["Port"])
p_db=data["Database"]
p_user=data["User"]
p_password=data["Password"]
try:
db = pymysql.connect(host=p_host, user=p_user, passwd=p_password, db=p_db, port=p_port,
charset='utf8', cursorclass=pymysql.cursors.DictCursor)
db.ping(reconnect=True)
cursor = db.cursor()
sql = "SHOW TABLES"
cursor.execute(sql)
tables = cursor.fetchall()
if tables:
table_names = list(map(lambda x: list(x.values())[0], tables))
res["results"] = table_names
else:
res["successCode"] = "0"
cursor.close()
db.close()
return res
except:
res["successCode"] = "0"
res["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
return res
def getTableColumnNames(data,logging):
res={"successCode":"1","errorLog":"","results":""}
p_host=data["Host"]
p_port=int(data["Port"])
p_db=data["Database"]
p_user=data["User"]
p_password=data["Password"]
p_table=data["Table"]
try:
db = pymysql.connect(host=p_host, user=p_user, passwd=p_password, db=p_db, port=p_port,
charset='utf8', cursorclass=pymysql.cursors.DictCursor)
db.ping(reconnect=True)
cursor = db.cursor()
sql = "DESCRIBE "+p_table
cursor.execute(sql)
tables = cursor.fetchall()
if tables:
table_names = list(map(lambda x: x['Field'], tables))
res["results"] = table_names
else:
res["successCode"] = "0"
cursor.close()
db.close()
return res
except:
res["successCode"] = "0"
res["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
return res
def mysqlInsert(input,logging):
res={"successCode":"1","errorLog":"","results":""}
data=input["metadata"]["admin"]
p_host=data["Host"]
p_port=int(data["Port"])
p_db=data["Database"]
p_user=data["User"]
p_password=data["Password"]
p_table=data["Table"]
p_columnName=data["columnName"]
cN='('+','.join(p_columnName)+') '
p_values=data["values"]
val=tuple(p_values)
try:
db = pymysql.connect(host=p_host, user=p_user, passwd=p_password, db=p_db, port=p_port,
charset='utf8', cursorclass=pymysql.cursors.DictCursor)
db.ping(reconnect=True)
cursor = db.cursor()
sql = "insert into " + p_table + cN + "values ("+ ','.join(['%s'] * len(val)) + ")"
cursor.execute(sql,val)
db.commit()
cursor.close()
db.close()
return res
except:
res["successCode"] = "0"
res["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
return res
def mysqlUpdate(input,logging):
res={"successCode":"1","errorLog":"","results":""}
data=input["metadata"]["admin"]
p_host=data["Host"]
p_port=int(data["Port"])
p_db=data["Database"]
p_user=data["User"]
p_password=data["Password"]
p_table=data["Table"]
# p_set=data["Set"]
p_set=get_updateSet(input)
# where=process_where(data["Filter"])
where=get_filter(data["Filter"])
try:
db = pymysql.connect(host=p_host, user=p_user, passwd=p_password, db=p_db, port=p_port,
charset='utf8', cursorclass=pymysql.cursors.DictCursor)
db.ping(reconnect=True)
cursor = db.cursor()
sql = "UPDATE " + p_table + p_set + where
print(sql)
cursor.execute(sql)
db.commit()
cursor.close()
db.close()
return res
except:
res["successCode"] = "0"
res["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
return res
def mysqlExecute(input,logging):
res={"successCode":"1","errorLog":"","results":""}
data=input["metadata"]["admin"]
p_host=data["Host"]
p_port=int(data["Port"])
p_db=data["Database"]
p_user=data["User"]
p_password=data["Password"]
execute=data["Execute"]
try:
db = pymysql.connect(host=p_host, user=p_user, passwd=p_password, db=p_db, port=p_port,
charset='utf8', cursorclass=pymysql.cursors.DictCursor)
db.ping(reconnect=True)
cursor = db.cursor()
cursor.execute(execute)
if 'select' in execute.lower():
result = cursor.fetchall()
res["results"]=json.dumps(result,ensure_ascii=False)
else:
db.commit()
cursor.close()
db.close()
return res
except:
res["successCode"] = "0"
res["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
return res
# def process_where(data):
# '''
# 组装where
# :param data: data["Filter"],{"key":"age","value":"20","operator":">"},{"logicalSymbol":"and"},{"key":"weight","value":"50","operator":"<"}
# :return: WHERE age>20 and weight<50
# '''
# if data=="" or data==[]:
# return ""
# where = " WHERE "
# for line in data:
# if "key" in line.keys():
# val = line["value"]
# if isinstance(val, str):
# val = "\'" + val + "\'"
# tmp = str(line["key"]) + " " + line["operator"] + " " + str(val)
# where += tmp
# else:
# where += " " + line["logicalSymbol"] + " "
# return where
#
# def process_filter(data):
# '''
# 组装key,value,operator
# :param data: data["Filter"],{"key":"age",value:"20","operator":"="}
# :return: age=20
# '''
# if data=="" or data==[]:
# return ""
# res=data["key"]+" "+data["operator"]+" "+data["value"]
# return res
def get_updateSet(input):
metadata=input["metadata"]
user=metadata["user"]
sets=metadata["admin"]["Set"]
res=[]
for line in sets:
part=line.split("=")
tmp = []
for p in part:
user_match=re.findall('##(.*?)##', p)
if user_match!=[]:
tmp.append(user[user_match[0]])
res.append(str(tmp[0])+"="+str(tmp[1]))
result=" SET "+",".join(res)
return result
def get_filter(data):
if "OR" not in data.keys():
return ""
op_or=data["OR"]
res = ""
if len(op_or) == 1:
tmp = []
line = op_or[0]["AND"]
for single_line in line:
val = single_line["value"]
if isinstance(val, str):
val = "\'" + val + "\'"
tmp.append(str(single_line["key"]) + single_line["operator"] + str(val))
if single_line != line[-1]:
tmp.append("and")
res = " WHERE "+" ".join(tmp)
elif len(op_or) > 1:
tmp = []
for single_and in op_or:
line = single_and["AND"]
for sigle_line in line:
val = sigle_line["value"]
if isinstance(val, str):
val = "\'" + val + "\'"
tmp.append(str(sigle_line["key"]) + sigle_line["operator"] + str(val))
if sigle_line != line[-1]:
tmp.append("and")
if single_and != op_or[-1]:
tmp.append("or")
res = " WHERE "+" ".join(tmp)
return res
def mysqlQuery(input,logging):
res={"successCode":"1","errorLog":"","results":""}
data=input["metadata"]["admin"]
p_host=data["Host"]
p_port=int(data["Port"])
p_db=data["Database"]
p_user=data["User"]
p_password=data["Password"]
p_table=data["Table"]
p_columnNames=data["columnNames"]
# p_filter=data["Filter"]
column='*'
if len(p_columnNames)==1:
column=p_columnNames[0]
elif len(p_columnNames)>1:
column=','.join(p_columnNames)
where=get_filter(data["Filter"])
try:
db = pymysql.connect(host=p_host, user=p_user, passwd=p_password, db=p_db, port=p_port,
charset='utf8', cursorclass=pymysql.cursors.DictCursor)
db.ping(reconnect=True)
cursor = db.cursor()
sql = "SELECT " + column +" From "+ p_table + where
# print(sql)
cursor.execute(sql)
result = cursor.fetchall()
res["results"]=json.dumps(result,ensure_ascii=False)
cursor.close()
db.close()
return res
except:
res["successCode"] = "0"
res["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
return res
def mysqlDelete(input,logging):
res={"successCode":"1","errorLog":"","results":""}
data=input["metadata"]["admin"]
p_host=data["Host"]
p_port=int(data["Port"])
p_db=data["Database"]
p_user=data["User"]
p_password=data["Password"]
p_table=data["Table"]
# where=process_where(data["Filter"])
where=get_filter(data["Filter"])
try:
db = pymysql.connect(host=p_host, user=p_user, passwd=p_password, db=p_db, port=p_port,
charset='utf8', cursorclass=pymysql.cursors.DictCursor)
db.ping(reconnect=True)
cursor = db.cursor()
sql = "DELETE From "+ p_table + where
cursor.execute(sql)
db.commit()
cursor.close()
db.close()
return res
except:
res["successCode"] = "0"
res["errorLog"]=traceback.format_exc()
logging.error(traceback.format_exc())
return res
if __name__=="__main__":
input={"metadata":{"admin":{
"type":"query",
"Table":"student",
"columnNames":["name","age"],
"Set":["##tag1##=##value1##","##tag2##=##value2##"],
"Filter":{
"OR":[
{
"AND":[{"key":"age","value":20,"operator":">"},{"key":"weight","value":50,"operator":"<"}]
},
{
"AND":[{"key":"name","value":"ff","operator":"="}]
}
]
},
"Host":"172.26.28.30",
"Port":"3306",
"Database":"test",
"User":"crawl",
"Password":"crawl123"
}},
"user": {
"tag1": "age",
"tag2": "weight",
"value1": 2,
"value2": 100
}
}
res=mysqlUpdate(input,"")
print(res)

51
text_analysis/tools/process.py

@ -0,0 +1,51 @@
#coding:utf8
import os, sys
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from text_analysis.tools import to_kafka
from tools.mysql_helper import mysqlConn,mysqlInsert,mysqlQuery,mysqlExecute,mysqlUpdate,mysqlDelete,getTableColumnNames
import traceback
import time
from log_util.set_logger import set_logger
logging=set_logger('results.log')
from views import task_queue
def process_data():
while True:
try:
# print("task_queue:",task_queue)
if task_queue.qsize() >0:
try:
raw_data = task_queue.get()
res = ""
logging.info("启动数据处理线程——")
logging.info(raw_data)
flag = raw_data["metadata"]["admin"]["type"]
# type分为execute、query、insert、update、delete
if flag == 'insert':
res = mysqlInsert(raw_data, logging)
elif flag == 'execute':
res = mysqlExecute(raw_data, logging)
elif flag == 'update':
res = mysqlUpdate(raw_data, logging)
elif flag == 'query':
res = mysqlQuery(raw_data, logging)
elif flag == 'delete':
res = mysqlDelete(raw_data, logging)
raw_data["result"] = res
logging.info("************写入kafka***********")
to_kafka.send_kafka(raw_data)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": ""}
raw_data["result"]["errorLog"] = traceback.format_exc()
to_kafka.send_kafka(raw_data)
else:
logging.info("暂无任务,进入休眠--")
print("222222222222222222222222")
time.sleep(10)
except:
logging.error(traceback.format_exc())

171
text_analysis/tools/seleniumTest.py

@ -0,0 +1,171 @@
# -*- coding: utf-8 -*-
import time
import threading
from selenium import webdriver
import json
from urllib.parse import urljoin
from kakfa_util import KafkaConsume
from kakfa_util import kafkaProduce
from logUtil import get_logger
from Go_fastDfs import uploadFile
import traceback
import queue
import configparser
import os, sys
import re
logger = get_logger("./logs/crawlWebsrcCode.log")
#加载配置文件
configFile = './config.ini'
# 创建配置文件对象
con = configparser.ConfigParser()
# 读取文件
con.read(configFile, encoding='utf-8')
kafkaConfig = dict(con.items('kafka'))#kafka配置信息
goFastdfsConfig = dict(con.items('goFastdfs'))#goFastdfs配置信息
class Spider(object):
def __init__(self,url):
self.chromeOptions = self.get_profile()
self.browser = self.get_browser()
self.url = url
def get_profile(self):
chromeOptions = webdriver.ChromeOptions()
chromeOptions.add_argument('--headless') # 谷歌无头模式
chromeOptions.add_argument('--disable-gpu') # 禁用显卡
# chromeOptions.add_argument('window-size=1280,800') # 指定浏览器分辨率
chromeOptions.add_argument("--no-sandbox")
return chromeOptions
def get_browser(self):
browser = webdriver.Chrome("D:\\工作使用\\zhaoshang\\chromedriver.exe",chrome_options=self.chromeOptions)
return browser
def _get_page(self,path):
'''
:param path:
:return:
'''
self.browser.get(self.url)
time.sleep(5)
logger.info("休眠结束")
# 向下偏移了10000个像素,到达底部。
scrollTop = 10000
for num in range(1,10):
js = "var q=document.documentElement.scrollTop={}".format(scrollTop*num)
logger.info("第{}次滚动".format(num))
self.browser.execute_script(js)
time.sleep(5)
# 执行 Chome 开发工具命令,得到mhtml内容
res = self.browser.execute_cdp_cmd('Page.captureSnapshot', {})
#获取文章标题
title = '无标题'
try:
title = self.browser.find_element_by_css_selector("title").get_attribute("textContent")
except Exception as e:
logger.error('获取标题异常----')
traceback.print_exc()
pathName = '{}{}.mhtml'.format(path,title)
with open(pathName, 'w',newline='') as f:
f.write(res['data'])
return pathName,title
if __name__ == '__main__':
#初始化任务队列
task_queue = queue.Queue()
#跟读kafka线程
logger.info("开启读取kafka线程---")
t = threading.Thread(target=KafkaConsume, name='LoopThread',args=(kafkaConfig['read_topic'], kafkaConfig['address'], kafkaConfig['group_id'], task_queue,logger))
t.daemon = True
t.start()
#获取任务执行页面原格式保留
while True:
try:
if task_queue.qsize() >0:
taskStr = task_queue.get()
logger.info('当前任务:{}'.format(taskStr))
task = json.loads(taskStr)
p1 = u'(https?|ftp|file)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]'
pattern1 = re.compile(p1)
matcher1 = re.search(p1, task['url'])
if matcher1:
l = Spider(task['url'])
pathName,title = l._get_page(goFastdfsConfig['path'])
l.browser.quit()
#gofast 上传,写入kafka
if '404 Not Found' in title:
logger.error('页面404,无效')
resultData = {
'code': 500,
'id': task['id'],
'message': '页面404'
}
kafkaProduce(kafkaConfig['data_topics'],
json.dumps(resultData).encode('utf-8').decode('unicode_escape').encode(),
kafkaConfig['address'])
time.sleep(2)
continue
try:
uploadStr = uploadFile('{}upload'.format(goFastdfsConfig['uploadaddress']),pathName,logger)
uploadJson = json.loads(uploadStr)
except Exception as e:
logger.error('文件上传异常----')
traceback.print_exc()
resultData = {
'code': 500,
'id': task['id'],
'message': '文件上传失败'
}
kafkaProduce(kafkaConfig['data_topics'],
json.dumps(resultData).encode('utf-8').decode('unicode_escape').encode(),
kafkaConfig['address'])
time.sleep(2)
continue
resultData = {
'code':200,
'id':task['id'],
'url':goFastdfsConfig['downloadaddress']+uploadJson['path'],
'title':title,
'delMd5':uploadJson['md5'],
'uploadTime':uploadJson['mtime'],
'message':'成功'
}
kafkaProduce(kafkaConfig['data_topics'],json.dumps(resultData).encode('utf-8').decode('unicode_escape').encode(),kafkaConfig['address'])
logger.info('数据写入成功')
#删除文件
if (os.path.exists(pathName)):
os.remove(pathName)
logger.info('清除文件:{}'.format(pathName))
else:
logger.info('要删除的文件不存在:{}'.format(pathName))
else:
logger.error('非正确url:'.format(task['url']))
resultData = {
'code': 500,
'id': task['id'],
'message': '非正确url'
}
kafkaProduce(kafkaConfig['data_topics'],
json.dumps(resultData).encode('utf-8').decode('unicode_escape').encode(),
kafkaConfig['address'])
time.sleep(2)
continue
else:
logger.info("暂无任务,进入休眠--")
time.sleep(10)
except Exception as e:
logger.error('未知异常----')
traceback.print_exc()
resultData = {
'code': 500,
'id': task['id'],
'message': '未知异常'
}
kafkaProduce(kafkaConfig['data_topics'],
json.dumps(resultData).encode('utf-8').decode('unicode_escape').encode(),
kafkaConfig['address'])
time.sleep(2)

25
text_analysis/tools/to_kafka.py

@ -0,0 +1,25 @@
#coding:utf8
import traceback
import json
from kafka import KafkaProducer
from text_analysis.read_config import load_config
config=load_config()
def send_kafka(data,logging):
try:
producer = None
topic = config["kafka"]["topic"]
data1=json.dumps(data,ensure_ascii=False)
kafkaProduce(topic,bytes(data1, encoding='utf-8'))
logging.info("数据推入kafka!")
except Exception as e:
logging.info(traceback.format_exc())
logging.info('写入kafka失败')
def kafkaProduce(topic,resultData):
producer = KafkaProducer(bootstrap_servers = '{}'.format(config["kafka"]["bootstrap_servers"]),max_request_size=52428800)
topics = topic.split(',')
for tc in topics:
future = producer.send(tc,resultData)
producer.flush()

74
text_analysis/tools/to_kafka_pykafka.py

@ -0,0 +1,74 @@
#coding:utf8
import traceback
from pykafka import KafkaClient
# from pykafka import partitioners
# from pykafka.simpleconsumer import OwnedPartition, OffsetType
import json
from tqdm import tqdm
# from kafka import KafkaProducer
from pykafka.simpleconsumer import OwnedPartition, OffsetType
def send_kafka(data,logging):
try:
producer = None
# client = KafkaClient(hosts='172.26.28.30:9092', socket_timeout_ms=10 * 1000)
topic = 'analyze'
# producer = client.topics[topic].get_sync_producer(**{'max_request_size': 3000012 * 5})
#producer = client.topics[topic].get_producer(sync=True)
client = KafkaClient(hosts='172.26.28.30:9092', socket_timeout_ms=10 * 1000)
# topic = client.topics['analyze']
producer = client.topics[topic].get_producer()
data1=json.dumps(data,ensure_ascii=False)
producer.produce(bytes(data1, encoding='utf-8'))
# kafkaProduce(topic,bytes(data1, encoding='utf-8'))
logging.info("数据推入kafka!")
except Exception as e:
logging.info(traceback.format_exc())
logging.info('写入kafka失败')
# def kafkaProduce(topic,resultData):
# producer = KafkaProducer(bootstrap_servers = '{}'.format("172.26.28.30:9092"))
# topics = topic.split(',')
# for tc in topics:
# future = producer.send(tc,resultData)
# producer.flush()
def consumer():
# topic = 'ais_caiji_kg_210'.encode('utf-8')
# client = KafkaClient(hosts='172.16.3.153:9092,172.16.3.154:9092,172.16.3.155:9092')
# topic = 'test_mysql_topic'.encode('utf-8')
# client = KafkaClient(hosts='localhost:9092')
# topic = client.topics[topic]
# consumer = topic.get_simple_consumer(consumer_group='test1',
# auto_commit_enable=True, # 去重消费
# auto_commit_interval_ms=1000,
# # consumer_id='test1', # 消费者ID
# reset_offset_on_start=True,
# # auto_offset_reset=OffsetType.LATEST,
# consumer_timeout_ms=100000)
# c = 0
# for msg in consumer:
# c += 1
# if msg:
# val = msg.value.decode('utf-8')
# print(c,val)
# client = KafkaClient(hosts='localhost:9092')
# topic = client.topics['test_mysql_topic']
client = KafkaClient(hosts='172.26.28.30:9092')
topic = client.topics['analyze']
consumer = topic.get_simple_consumer(consumer_group='my_consumer_group',
auto_offset_reset=OffsetType.LATEST,
reset_offset_on_start=True)
# 消费数据
for message in consumer:
if message is not None:
print(message.offset, message.value.decode())
if __name__=="__main__":
# send_kafka()
consumer()

178
text_analysis/tools/tool.py
File diff suppressed because it is too large
View File

44
text_analysis/tools/zk_util.py

@ -0,0 +1,44 @@
'''
"{
    "scenes_id":2222,
    "operation":"stop",
    "version":5
}"
scenes_id=2222
version!=0
'''
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
import time
# 连接到ZooKeeper服务器
zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
zk.start()
# 定义数据变更时的回调函数
def data_change_listener(event):
if event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
print("Data changed on node /analyze: {data.decode('utf-8')}")
elif event.type == EventType.DELETED:
print("Node /analyze has been deleted")
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None:
data_change_listener(event)
# 保持程序运行以监听节点变化
try:
while True:
print("ok")
time.sleep(1)
except KeyboardInterrupt:
print("Stopping...")
# 关闭连接
zk.stop()
zk.close()

13
text_analysis/urls.py

@ -0,0 +1,13 @@
from django.conf.urls import include, url
from django.contrib import admin
from text_analysis import views
urlpatterns = [
url(r'^chatGptNew',views.chatGptNew, name='chatGptNew'),
# url(r'^mysqlConnection',views.mysqlConnection, name='mysqlConnection'),
# url(r'^mysqlField', views.mysqlField, name='mysqlField')
]

148
text_analysis/views.py

@ -0,0 +1,148 @@
# coding:utf8
import os, sys
import io
import time
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
# import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
import queue
task_queue = queue.PriorityQueue()
stop_dict={}
from text_analysis.read_config import load_config
config=load_config()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
if "trace" in raw_data.keys() and raw_data["trace"]==True:
task_queue.put((-1,time.time(), raw_data))
else:
task_queue.put((1, time.time(),raw_data))
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
try:
if task_queue.qsize()>0:
p,t,raw_data = task_queue.get(timeout=1)
logging.info("当前任务队列长度{}".format(task_queue.qsize()+1))
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
res_tmp["isLast"]=1
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
# logging.info("任务数据为:{}".format(raw_data))
logging.info("当前version信息为:{}".format(stop_dict))
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停任务,过滤掉。{}".format(raw_data))
continue
data = get_content(raw_data, logging)
url = config["gptmodel"]["url"]
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
proxies = {
'http': 'http://jian.mao:maojian123@@oversea_vpn.baifendian.com:3128',
'https': 'http://jian.mao:maojian123@@oversea_vpn.baifendian.com:3128'
}
response = requests.request("POST", url, headers=headers, data=payload,timeout=180,proxies=proxies)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res["isLast"]=1
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
else:
time.sleep(10)
except queue.Empty:
#从空队列取任务
logging.info("该线程任务队列为空,等待新任务")
except:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": traceback.format_exc(), "results": res_tmp_json,"status":2,"message":"异常"}
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
def zk_monitoring():
try:
#线上环境
zk = KazooClient(hosts=config['zookeeper']['zkhost'])
#测试环境
# zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
zk.start()
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None and event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
logging.info("执行删除操作:{}".format(data))
d = json.loads(data)
id = d["scenes_id"]
stop_dict[id] = {}
stop_dict[id]["version"] = d["version"]
stop_dict[id]["operation"] = d["operation"]
# 保持程序运行以监听节点变化
try:
while True:
time.sleep(1)
except:
logging.info("Stopping...")
# 关闭连接
zk.stop()
zk.close()
except:
logging.error(traceback.format_exc())

148
text_analysis/views.py_bak

@ -0,0 +1,148 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
# import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
import queue
task_queue = queue.PriorityQueue()
stop_dict={}
from text_analysis.read_config import load_config
config=load_config()
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
if "trace" in raw_data.keys() and raw_data["trace"]==True:
task_queue.put((-1, raw_data))
else:
task_queue.put((1, raw_data))
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
try:
if task_queue.qsize()>0:
p,raw_data = task_queue.get(timeout=1)
logging.info("当前任务队列长度{}".format(task_queue.qsize()+1))
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
res_tmp["isLast"]=1
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
# logging.info("任务数据为:{}".format(raw_data))
logging.info("当前version信息为:{}".format(stop_dict))
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停任务,过滤掉。{}".format(raw_data))
continue
data = get_content(raw_data, logging)
url = config["gptmodel"]["url"]
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
proxies = {
'http': 'http://jian.mao:maojian123@@oversea_vpn.baifendian.com:3128',
'https': 'http://jian.mao:maojian123@@oversea_vpn.baifendian.com:3128'
}
response = requests.request("POST", url, headers=headers, data=payload,timeout=180,proxies=proxies)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res["isLast"]=1
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
else:
time.sleep(10)
except queue.Empty:
#从空队列取任务
logging.info("该线程任务队列为空,等待新任务")
except:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": traceback.format_exc(), "results": res_tmp_json,"status":2,"message":"异常"}
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
def zk_monitoring():
try:
#线上环境
zk = KazooClient(hosts=config['zookeeper']['zkhost'])
#测试环境
# zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
zk.start()
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None and event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
logging.info("执行删除操作:{}".format(data))
d = json.loads(data)
id = d["scenes_id"]
stop_dict[id] = {}
stop_dict[id]["version"] = d["version"]
stop_dict[id]["operation"] = d["operation"]
# 保持程序运行以监听节点变化
try:
while True:
time.sleep(1)
except:
logging.info("Stopping...")
# 关闭连接
zk.stop()
zk.close()
except:
logging.error(traceback.format_exc())

142
text_analysis/views_20241023.py

@ -0,0 +1,142 @@
# coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging = set_logger('logs/results.log')
import traceback
import queue
import requests
from text_analysis.tools.tool import get_content,parse_gptResult
import uuid
import time
from kazoo.client import KazooClient
from kazoo.protocol.states import EventType
# global task_queue
task_queue = queue.Queue()
# global stop_dict
stop_dict={}
@csrf_exempt
def chatGptNew(request):
if request.method == 'POST':
try:
# txt=request.body.encode("utf-8")
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def chatgpt():
while True:
if task_queue.qsize() > 0:
try:
logging.info("取任务队列长度{}".format(task_queue.qsize()))
raw_data = task_queue.get()
task_id=raw_data["scenes_id"]
task_version=raw_data["version"]
# logging.info("任务数据为:{}".format(raw_data))
logging.info("当前version信息为:{}".format(stop_dict))
if task_id in stop_dict.keys() and task_version!=stop_dict[task_id]["version"]:
logging.info("已暂停任务,过滤掉。{}".format(raw_data))
continue
output = raw_data["output"]
res_tmp = {key: "" for key in output}
if "id" in res_tmp.keys():
res_tmp["id"] = str(uuid.uuid4())
res_tmp["isLast"]=1
data = get_content(raw_data, logging)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json;charset=UTF-8",
"Authorization": "Bearer " + data["authorization"]
}
payload = json.dumps({
"model": data["model"],
"messages": [{"role": "user", "content": data["prompt"]}],
"temperature": float(data["temperature"]),
"top_p": float(data["top_p"]),
"n": int(data["n"])
})
logging.info("prompt为{}".format(data["prompt"]))
response = requests.request("POST", url, headers=headers, data=payload,timeout=180)
logging.info("GPT返回值:{}-{}".format(response,response.text))
d = json.loads(response.text)
result = d['choices'][0]['message']['content']
#添加 0是文本,1是json格式
fieldType = raw_data["input"]['fieldType']
if fieldType == 0:
res_tmp["content"] = result
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res=parse_gptResult(res_tmp,result)
if res:
res["isLast"]=1
res_tmp_json = json.dumps(res, ensure_ascii=False)
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json,"status":1,"message":"成功"}
else:
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"] = {"successCode": "0", "errorLog": "GPT返回值不是json格式,无法解析!", "results": res_tmp_json,"status":2,"message":"GPT返回结果非json格式"}
logging.info(raw_data)
to_kafka.send_kafka(raw_data, logging)
except:
raw_data["result"] = {"successCode": "0", "errorLog": "", "results": "","status":2,"message":"异常"}
raw_data["result"]["errorLog"] = traceback.format_exc()
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
raw_data["result"]["results"] = res_tmp_json
logging.info("调用gpt失败{}-{}".format(raw_data, traceback.format_exc()))
to_kafka.send_kafka(raw_data, logging)
else:
# logging.info("暂无任务,进入休眠--")
time.sleep(10)
def zk_monitoring():
try:
#线上环境
zk = KazooClient(hosts='172.18.1.146:2181,172.18.1.147:2181,172.18.1.148:2181')
#测试环境
# zk = KazooClient(hosts='172.16.12.55:2181,172.16.12.56:2181,172.16.12.57:2181')
zk.start()
# 设置监听器
@zk.DataWatch("/analyze")
def watch_node(data, stat, event):
if event is not None and event.type == EventType.CHANGED:
data, stat = zk.get("/analyze")
logging.info("执行删除操作:{}".format(data))
d = json.loads(data)
id = d["scenes_id"]
stop_dict[id] = {}
stop_dict[id]["version"] = d["version"]
stop_dict[id]["operation"] = d["operation"]
# 保持程序运行以监听节点变化
try:
while True:
time.sleep(1)
except:
logging.info("Stopping...")
# 关闭连接
zk.stop()
zk.close()
except:
logging.error(traceback.format_exc())

16
text_analysis/wsgi.py

@ -0,0 +1,16 @@
"""
WSGI config for Zhijian_Project_WebService project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "text_analysis.settings")
application = get_wsgi_application()

8
uwsgi.ini

@ -0,0 +1,8 @@
[uwsgi]
http = 0.0.0.0:9012
chdir = ../chatGptNew
wsgi-file = ../chatGptNew/wsgi.py
processes = 1
threads = 2
listen = 1024
http-timeout=21600

0
wsgi.log

35
wsgi.py

@ -0,0 +1,35 @@
"""
WSGI config for Zhijian_Project_WebService project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
"""
import os
import threading
from text_analysis.views import chatgpt,zk_monitoring
# t = threading.Thread(target=chatgpt, name='chatgpt')
# t.daemon = True
# t.start()
# 启动 5 个 chatgpt 线程
num_threads = 5
chatgpt_threads = [threading.Thread(target=chatgpt) for _ in range(num_threads)]
for thread in chatgpt_threads:
thread.daemon = True
thread.start()
#启动zk监听线程
t = threading.Thread(target=zk_monitoring, name='zk_monitoring')
t.daemon = True
t.start()
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "text_analysis.settings")
application = get_wsgi_application()

25
wsgi.py_20231109

@ -0,0 +1,25 @@
"""
WSGI config for Zhijian_Project_WebService project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
"""
import os
import threading
from text_analysis.views import chatgpt
t = threading.Thread(target=chatgpt, name='chatgpt')
t.daemon = True
t.start()
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "text_analysis.settings")
application = get_wsgi_application()
Loading…
Cancel
Save