查询知识库应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

66 lines
2.4 KiB

# from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
import chromadb
from tqdm import tqdm
from langchain.text_splitter import RecursiveCharacterTextSplitter
import uuid
class LangChainChroma:
def __init__(self,collection_name):
dirPath="../chromaDB/allField/"
self.chroma_client = chromadb.PersistentClient(path=dirPath+collection_name)
# chroma_client=chromadb.Client(Settings(allow_reset=True,persist_directory="../allField/demo/"))
self.collection=self.chroma_client.get_or_create_collection(name=collection_name,metadata={"hnsw:space": "cosine"})
model = SentenceTransformer('text_analysis/shibing624/text2vec-base-chinese')
# model = SentenceTransformer('shibing624/text2vec-base-chinese')
self.bge_model = model
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=0,separators=["\n\n", "\n", " ", ""])
# chroma_client.reset()
def db_close(self):
self.chroma_client.clear_system_cache()
def embedding_fn(self, paragraphs):
'''文本向量化'''
doc_vecs = [
self.bge_model.encode(doc, normalize_embeddings=True).tolist()
for doc in paragraphs
]
return doc_vecs
def add_documents(self,documents):
# embeddings=get_embeddings(documents)
#向collection中添加文档与向量
ids = ["id-{}".format(uuid.uuid1()) for i in range(len(documents))]
self.collection.add(
embeddings=self.embedding_fn(documents),#每个文档的向量
documents=documents,
ids=ids
)
# logging.info('当前数据划分{}个块。数据库共有{}个块'.format(len(documents),db_count))
return ids
def search(self,queryQ,top_n):
results=self.collection.query(
# query_texts=[query],
query_embeddings=self.embedding_fn([queryQ]),
n_results=top_n
)
return results
# vector_db=LangChainChroma("demo")
# with open("policy_test2.txt", "r", encoding="utf8") as f:
# for line in tqdm(f):
# # documents = [Document(page_content=line)]
# docs = text_splitter.split_text(line)
# a=vector_db.add_documents(docs)
# print(a)
# print("over")
# user_query="鲍炳章同志?"
# results=vector_db.search(user_query,3)
# for para in results['documents'][0]:
# print(para+'\n')