You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.6 KiB
93 lines
3.6 KiB
# coding:utf8
|
|
import os, sys
|
|
import io
|
|
from jsonpath_ng import jsonpath, parse
|
|
import uuid
|
|
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
|
|
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
|
|
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
|
|
sys.path.append(cur_dir)
|
|
sys.path.append(par_dir)
|
|
import json
|
|
from django.http import HttpResponse
|
|
from text_analysis.tools import to_kafka
|
|
from django.views.decorators.csrf import csrf_exempt
|
|
from log_util.set_logger import set_logger
|
|
from datetime import datetime, timedelta
|
|
logging = set_logger('logs/results.log')
|
|
import traceback
|
|
import queue
|
|
import requests
|
|
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
|
from text_analysis.tools.tool import parse_data,promptPro
|
|
from text_analysis.chroma1 import LangChainChroma
|
|
import time
|
|
from datetime import datetime
|
|
import os
|
|
from langchain.vectorstores import Chroma
|
|
|
|
# 任务队列
|
|
global task_queue
|
|
task_queue = queue.Queue()
|
|
# LC = LangChainChroma()
|
|
|
|
|
|
@csrf_exempt
|
|
def promptSim(request):
|
|
if request.method == 'POST':
|
|
try:
|
|
raw_data = json.loads(request.body)
|
|
task_queue.put(raw_data)
|
|
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
|
|
except:
|
|
logging.error(traceback.format_exc())
|
|
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
|
|
else:
|
|
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
|
|
|
|
|
|
def upload():
|
|
while True:
|
|
try:
|
|
if task_queue.qsize() > 0:
|
|
logging.info("取任务队列长度{}".format(task_queue.qsize()))
|
|
raw_data = task_queue.get()
|
|
output=raw_data["output"]
|
|
res_tmp={key: "" for key in output}
|
|
if "id" in res_tmp.keys():
|
|
res_tmp["id"]=str(uuid.uuid4())
|
|
logging.info("任务数据为:{}".format(raw_data))
|
|
topn=parse_data(raw_data,raw_data["input"]["topn"])
|
|
prompt=parse_data(raw_data,raw_data["input"]["prompt"])
|
|
fieldName=parse_data(raw_data,raw_data["input"]["fieldName"])
|
|
vector_db=LangChainChroma(fieldName)
|
|
docs=vector_db.search(prompt,topn)
|
|
vector_db.db_close()
|
|
logging.info("向量数据库搜索的相似上下文:{}".format(docs))
|
|
#组装,最长字符5W
|
|
res=promptPro(prompt,docs)
|
|
logging.info("生成的上下文:{}".format(res))
|
|
res_tmp["promptRes"]=res
|
|
res_tmp_json = json.dumps(res_tmp, ensure_ascii=False)
|
|
raw_data["result"] = {"successCode": "1", "errorLog": "", "results": res_tmp_json}
|
|
raw_data["result"]["status"] = 1
|
|
raw_data["result"]["message"] = "成功"
|
|
logging.info("结果数据为:{}".format(raw_data))
|
|
to_kafka.send_kafka(raw_data, logging)
|
|
else:
|
|
# 暂无任务,进入休眠
|
|
time.sleep(10)
|
|
except:
|
|
raw_data["result"]={}
|
|
raw_data["result"]["successCode"] = "0"
|
|
raw_data["result"]["errorLog"] = traceback.format_exc()
|
|
raw_data["result"]["status"] = 2
|
|
raw_data["result"]["message"] = "异常"
|
|
raw_data["result"]["results"] = json.dumps(res_tmp, ensure_ascii=False)
|
|
logging.error(traceback.format_exc())
|
|
to_kafka.send_kafka(raw_data, logging)
|
|
|
|
|
|
|
|
|
|
|