#coding:utf8 import os, sys import io sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8') cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd() par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir)) sys.path.append(cur_dir) sys.path.append(par_dir) import json from django.http import HttpResponse from text_analysis.tools import to_kafka,tool from django.views.decorators.csrf import csrf_exempt from log_util.set_logger import set_logger logging=set_logger('logs/results.log') import traceback import queue import requests import time from datetime import datetime, timedelta import os import joblib #任务队列 global task_queue task_queue = queue.Queue() global replyGraph replyGraph={} @csrf_exempt def robotIdentificationTopic(request): if request.method == 'POST': try: raw_data = json.loads(request.body) task_queue.put(raw_data) return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False)) except: logging.error(traceback.format_exc()) return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False)) else: return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False)) def predictTopic(): while True: if task_queue.qsize() >0: try: logging.info("取任务队列长度{}".format(task_queue.qsize())) raw_data = task_queue.get() # 识别结果返回值 recognition_code = "0" logging.info("原始数据-{}".format(raw_data)) # 用户数据 res = {"successCode": "1", "errorLog": "", "results": {}} # 获取历史数据源 all_result = raw_data['data'] user_data = [] data=raw_data["metadata"]["admin"] # {"user_file": "9_获取用户信息", "post_file": "10_获取用户发帖信息"} user_file_result = json.loads(all_result[data['user_file']]) data['user_file'] = user_file_result logging.info('用户数据:{}'.format(data['user_file'])) post_file_result = json.loads(all_result[data['post_file']]) if post_file_result['resultList']: data['post_file'] = post_file_result['resultList'][0] logging.info('帖子数据:{}'.format(data['post_file'])) else: data['post_file'] = {} try: user_data_otherInfo_1 = 0 if data["user_file"]["otherInfo"].strip() == "" else 1 except: user_data_otherInfo_1 = 0 try: user_data_nickName_2 = 0 if data["user_file"]["nickName"].strip() == "" else 1 except: user_data_nickName_2 = 0 try: user_data_likeCount_4 = int(data["user_file"]["likeCount"]) except: user_data_likeCount_4 = 0 try: user_data_postCount_5 = int(data["user_file"]["postCount"]) except: user_data_postCount_5 = 0 try: user_data_authentication_6 = int(data["user_file"]["authentication"]) except: user_data_authentication_6 = 0 user_data.extend( [user_data_otherInfo_1, user_data_nickName_2, user_data_likeCount_4,user_data_postCount_5, user_data_authentication_6]) logging.info("用户数据处理完毕!-{}".format(user_data)) # 帖子数据 post_data = [] if data["post_file"]=={}: post_data=[0,0,0,0,0,0,0,0] else: try: post_data_LikeCount_1 = int(data["post_file"]["LikeCount"]) except: post_data_LikeCount_1 = 0 try: post_data_ShareCount_2 = int(data["post_file"]["ShareCount"]) except: post_data_ShareCount_2 = 0 try: post_data_emotionCount_3 = int(data["post_file"]["emotionCount"]) except: post_data_emotionCount_3 = 0 try: post_data_CommentsCount_4 = int(data["post_file"]["CommentsCount"]) except: post_data_CommentsCount_4 = 0 try: post_data_length_5 = int(data["post_file"]["length"]) except: post_data_length_5 = 0 try: post_data_tags_6 = int(data["post_file"]["tags"]) except: post_data_tags_6 = 0 try: post_data_https_7 = int(data["post_file"]["https"]) except: post_data_https_7 = 0 try: post_data_diffdate_8 = int(data["post_file"]["diffdate"]) except: post_data_diffdate_8 = 0 post_data.extend( [post_data_LikeCount_1, post_data_ShareCount_2, post_data_emotionCount_3, post_data_CommentsCount_4, post_data_length_5, post_data_tags_6, post_data_https_7, post_data_diffdate_8]) logging.info("帖子数据处理完毕!-{}".format(post_data)) #关系数据 reply_data_1 = [0, 0, 0, 0, 0] reply_data_2 = [0, 0] try: #先判断内存中是否有该专题图信息 topicID=data["reply_file"]["topicId"] if topicID not in list(replyGraph.keys()): reply_file=tool.mysqlData(raw_data,logging) if reply_file!='': graph=tool.get_replyData(reply_file) replyGraph[topicID]=graph else: graph=replyGraph[topicID] userId=data["user_file"]["accountId"] if userId in list(graph.keys()): closeness_centrality=graph["userId"]["closeness_centrality"] pagerank=graph["userId"]["pagerank"] clustering=graph["userId"]["clustering"] in_degree=graph["userId"]["in_degree"] out_degree=graph["userId"]["out_degree"] reply_data_1=[closeness_centrality,pagerank,clustering,in_degree,out_degree] user_flag_infl=graph["userId"]["user_flag_infl"] user_flag_act=graph["userId"]["user_flag_act"] reply_data_2=[user_flag_infl,user_flag_act] replyGraph[topicID]["last_operation_time"]=datetime.now() except: logging.info("专题关系数据mysql获取失败!") logging.info(traceback.format_exc()) logging.info("关系数据处理完毕!{}-{}".format(reply_data_1,reply_data_2)) features = [user_data + reply_data_1 + post_data + reply_data_2] bot_user = joblib.load(cur_dir+"/model/bot_topic.pkl") # 加载训练好的模型 result = bot_user.predict(features) recognition_code = str(result[0]) res["results"]=str(result[0]) results = {} # 用户id results['accountId'] = data["user_file"]["accountId"] # 用户昵称 results['nickName'] = data["user_file"]["nickName"] # 用户账号 results['accountName'] = data["user_file"]["accountName"] if recognition_code == '0': results['recognitionResult'] = '非机器人' results['recognitionCode'] = recognition_code elif recognition_code == '1': results['recognitionResult'] = '机器人' results['recognitionCode'] = recognition_code else: results['recognitionResult'] = '未知识别结果' results['recognitionCode'] = recognition_code res['results'] = json.dumps(results) raw_data["result"] = res logging.info("增加预测数据-{}".format(raw_data)) to_kafka.send_kafka(raw_data, logging) except: res = {"successCode": "0", "errorLog": "", "results": {}} raw_data["result"] = res raw_data["result"]["error"] = traceback.format_exc() logging.info(traceback.format_exc()) to_kafka.send_kafka(raw_data, logging) else: #暂无任务,进入休眠 time.sleep(10) def replyGraphThread(): ''' 判断话题是否结束,如果2个小时未访问话题,则删除该话题的图信息。 :return: ''' while True: try: if replyGraph!={}: # 获取当前时间 current_time = datetime.now() for topicID in list(replyGraph.keys()): # 计算最后一次操作的时间与当前时间的差值 time_difference = current_time - replyGraph[topicID]['last_operation_time'] # 如果差值大于等于120分钟,则删除该话题图信息 if time_difference >= timedelta(minutes=120): del replyGraph[topicID] except: logging.info(traceback.format_exc()) finally: time.sleep(1800)