话题水军识别应用
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

396 lines
18 KiB

#coding:utf8
import os, sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8')
cur_dir = os.path.dirname(os.path.abspath(__file__)) or os.getcwd()
par_dir = os.path.abspath(os.path.join(cur_dir, os.path.pardir))
sys.path.append(cur_dir)
sys.path.append(par_dir)
import json
from django.http import HttpResponse
from text_analysis.tools import to_kafka,tool
from django.views.decorators.csrf import csrf_exempt
from log_util.set_logger import set_logger
logging=set_logger('logs/results.log')
import traceback
import queue
import requests
import time
from datetime import datetime, timedelta
from text_analysis.cusException import userFile_Exception,postFile_Exception,replyFile_Exception
from text_analysis.tools.tool import parse_data
import os
import joblib
from text_analysis.tools.db_pool import get_conn_pool
#任务队列
global task_queue
task_queue = queue.Queue()
global replyGraph
replyGraph={}
@csrf_exempt
def robotIdentificationTopic(request):
if request.method == 'POST':
try:
raw_data = json.loads(request.body)
task_queue.put(raw_data)
return HttpResponse(json.dumps({"code": 1, "msg": "请求正常!"}, ensure_ascii=False))
except:
logging.error(traceback.format_exc())
return HttpResponse(json.dumps({"code": 0, "msg": "请求json格式不正确!"}, ensure_ascii=False))
else:
return HttpResponse(json.dumps({"code": 0, "msg": "请求方式错误,改为post请求"}, ensure_ascii=False))
def predictTopic(user_file_result,post_file_result,task,dbConfig,taskId):
try:
# 识别结果返回值
recognition_code = "0"
# 用户数据
res = {"successCode": "1", "errorLog": "", "results": {}}
# 获取历史数据源
all_result = task['data']
user_data = []
data={}
#返回值需要的三个字段
accountId=""
nickName=""
accountName=""
# {"user_file": "9_获取用户信息", "post_file": "10_获取用户发帖信息"}
if user_file_result:
data['user_file'] = user_file_result
logging.info('用户数据:{}'.format(data['user_file']))
accountId = data["user_file"]["accountId"]
nickName = data["user_file"]["nickName"]
accountName = data["user_file"]["accountName"]
else:
data['user_file'] ={}
raise userFile_Exception
if post_file_result:
data['post_file'] = post_file_result
logging.info('帖子数据:{}'.format(data['post_file']))
else:
data['post_file'] = {}
raise postFile_Exception
try:
user_data_otherInfo_1 = 0 if data["user_file"]["otherInfo"].strip() == "" else 1
except:
user_data_otherInfo_1 = 0
try:
user_data_nickName_2 = 0 if data["user_file"]["nickName"].strip() == "" else 1
except:
user_data_nickName_2 = 0
try:
user_data_likeCount_4 = int(data["user_file"]["likeCount"])
except:
user_data_likeCount_4 = 0
try:
user_data_postCount_5 = int(data["user_file"]["postCount"])
except:
user_data_postCount_5 = 0
try:
user_data_authentication_6 = int(data["user_file"]["authentication"])
except:
user_data_authentication_6 = 0
user_data.extend(
[user_data_otherInfo_1, user_data_nickName_2, user_data_likeCount_4,user_data_postCount_5, user_data_authentication_6])
logging.info("用户数据处理完毕!-{}".format(user_data))
# 帖子数据
post_data = []
if data["post_file"]=={}:
post_data=[0,0,0,0,0,0,0,0]
else:
try:
post_data_LikeCount_1 = int(data["post_file"]["LikeCount"])
except:
post_data_LikeCount_1 = 0
try:
post_data_ShareCount_2 = int(data["post_file"]["ShareCount"])
except:
post_data_ShareCount_2 = 0
try:
post_data_emotionCount_3 = int(data["post_file"]["emotionCount"])
except:
post_data_emotionCount_3 = 0
try:
post_data_CommentsCount_4 = int(data["post_file"]["CommentsCount"])
except:
post_data_CommentsCount_4 = 0
try:
post_data_length_5 = int(data["post_file"]["length"])
except:
post_data_length_5 = 0
try:
post_data_tags_6 = int(data["post_file"]["tags"])
except:
post_data_tags_6 = 0
try:
post_data_https_7 = int(data["post_file"]["https"])
except:
post_data_https_7 = 0
try:
post_data_diffdate_8 = int(data["post_file"]["diffdate"])
except:
post_data_diffdate_8 = 0
post_data.extend(
[post_data_LikeCount_1, post_data_ShareCount_2, post_data_emotionCount_3, post_data_CommentsCount_4,
post_data_length_5, post_data_tags_6, post_data_https_7, post_data_diffdate_8])
logging.info("帖子数据处理完毕!-{}".format(post_data))
#关系数据
reply_data_1 = [0, 0, 0, 0, 0]
reply_data_2 = [0, 0]
try:
#先判断内存中是否有该专题图信息
topicID=taskId
if topicID not in list(replyGraph.keys()):
reply_file=tool.mysqlData(dbConfig,topicID,logging)
if reply_file:
graph=tool.get_replyData(reply_file)
replyGraph[topicID]=graph
else:
raise replyFile_Exception
else:
graph=replyGraph[topicID]
userId=data["user_file"]["accountId"]
if userId in list(graph.keys()):
closeness_centrality=graph["userId"]["closeness_centrality"]
pagerank=graph["userId"]["pagerank"]
clustering=graph["userId"]["clustering"]
in_degree=graph["userId"]["in_degree"]
out_degree=graph["userId"]["out_degree"]
reply_data_1=[closeness_centrality,pagerank,clustering,in_degree,out_degree]
user_flag_infl=graph["userId"]["user_flag_infl"]
user_flag_act=graph["userId"]["user_flag_act"]
reply_data_2=[user_flag_infl,user_flag_act]
replyGraph[topicID]["last_operation_time"]=datetime.now()
except:
logging.info("专题关系数据mysql获取失败!")
logging.info(traceback.format_exc())
logging.info("关系数据处理完毕!{}-{}".format(reply_data_1,reply_data_2))
features = [user_data + reply_data_1 + post_data + reply_data_2]
bot_user = joblib.load(cur_dir+"/model/bot_topic.pkl") # 加载训练好的模型
result = bot_user.predict(features)
recognition_code = str(result[0])
res["results"]=str(result[0])
results = {}
# 用户id
results['authorId'] = accountId
# 用户昵称
results['nickName'] = nickName
# 用户账号
results['accountName'] = accountName
# 结束标识
res['isLast'] = True
# 数据类型 --目前只提供给图谱使用
results['pageType'] = 'userAuthenPage'
if recognition_code == '0':
results['recognitionResult'] = '非机器人'
results['recognitionCode'] = recognition_code
elif recognition_code == '1':
results['recognitionResult'] = '机器人'
results['recognitionCode'] = recognition_code
else:
results['recognitionResult'] = '未知识别结果'
results['recognitionCode'] = recognition_code
results["isLast"]=1
res['results'] = json.dumps(results)
res["status"]=1
res["message"]="成功"
task["result"] = res
logging.info("增加预测数据-{}".format(task))
to_kafka.send_kafka(task, logging)
except userFile_Exception:
res = {"successCode": "0", "errorLog": "用户数据为空!", "results": {}}
results={}
results['authorId'] = ""
results['nickName'] = ""
results['accountName'] = ""
results['recognitionResult'] = '用户数据为空'
results["isLast"]=1
res['results'] = json.dumps(results)
res["status"]=2
res["message"]="用户数据为空"
task["result"] = res
logging.info("该条请求用户数据为空-{}".format(task))
to_kafka.send_kafka(task, logging)
except postFile_Exception:
res = {"successCode": "0", "errorLog": "帖子数据为空!", "results": {}}
results={}
results['authorId'] = accountId
results['nickName'] = nickName
results['accountName'] = accountName
results['recognitionResult'] = '帖子数据为空'
results["isLast"]=1
res['results'] = json.dumps(results)
res["status"]=2
res["message"]="帖子数据为空"
task["result"] = res
logging.info("该条请求帖子数据为空-{}".format(task))
to_kafka.send_kafka(task, logging)
except replyFile_Exception:
res = {"successCode": "0", "errorLog": "发帖和评论关系数据为空!", "results": {}}
results={}
results['authorId'] = accountId
results['nickName'] = nickName
results['accountName'] = accountName
results['recognitionResult'] = '发帖和评论关系数据为空'
results["isLast"]=1
res['results'] = json.dumps(results)
res["status"]=2
res["message"]="发帖和评论关系数据为空"
task["result"] = res
logging.info("该条请求发帖和评论关系数据为空-{}".format(task))
to_kafka.send_kafka(task, logging)
except:
res = {"successCode": "0", "errorLog": "", "results": {}}
results = {}
results['authorId'] = accountId
results['nickName'] = nickName
results['accountName'] = accountName
results['recognitionResult'] = ""
results["isLast"]=1
res['results'] = json.dumps(results)
res["status"]=2
res["message"]="异常"
task["result"] = res
task["result"]["errorLog"] = traceback.format_exc()
logging.info(traceback.format_exc())
to_kafka.send_kafka(task, logging)
def data_structure(dbConfig):
'''
所需计算数据入库
:param dbConfig: 数据库连接信息
:return:
'''
# 获取数据库连接
sqlhelper = get_conn_pool(dbConfig['host'], dbConfig['port'], dbConfig['username'], dbConfig['password'],dbConfig['db'])
#用户任务结构体缓存
user_tasks = {}
while True:
if task_queue.qsize() > 0:
try:
task = task_queue.get()
input = task['input']
account = input['account']
post = input['post']
reply = input['reply']
#判断数据类型
data = task['data']
page_type = None
taskId = None
app_data = None
for data_str in data:
try:
app_data = json.loads(data[data_str])
taskId = app_data['taskId']
if "pageType" in app_data:
page_type = app_data['pageType']
break
except:
logging.error("正常判断,异常请忽略")
if page_type == 'userInfoPage':
#用户添加到缓存
accountId = parse_data(task, account['accountId'])
user_tasks[accountId] = task
logging.info('成功添加用户缓存:{}'.format(accountId))
#用户类型数据写入
sql = "INSERT INTO `user_account`(`taskId`, `accountId`, `accountName`, `nickName`, `fansCount`, `likeCount`, `postCount`, `otherInfo`, `authentication`) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s)"
# 构造参数元组
values = (
parse_data(task, account['taskId']),
parse_data(task, account['accountId']),
parse_data(task, account['accountName']),
parse_data(task, account['nickName']),
parse_data(task, account['fansCount']),
parse_data(task, account['likeCount']),
parse_data(task, account['postCount']),
parse_data(task, account['otherInfo']),
parse_data(task, account['authentication'])
)
sqlhelper.insert(sql,values)
elif page_type == 'storyDetailPage':
#帖子类型数据写入
sql = "INSERT INTO `user_post`(`taskId`, `postId`, `accountId`, `accountName`, `likeCount`, `emotionCount`, `commentsCount`, `shareCount`, `content`, `pubTime`, `crawlTime`) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
# 构造参数元组
values = (
parse_data(task, post['taskId']),
parse_data(task, post['postId']),
parse_data(task, post['accountId']),
parse_data(task, post['accountName']),
parse_data(task, post['likeCount']),
parse_data(task, post['emotionCount']),
parse_data(task, post['commentsCount']),
parse_data(task, post['shareCount']),
parse_data(task, post['content']),
parse_data(task, post['pubTime']),
parse_data(task, post['crawlTime'])
)
sqlhelper.insert(sql,values)
elif page_type == 'socialComment':
#评论类型数据写入
sql = "INSERT INTO `reply`(`taskId`, `ReviewerAccountId`, `ReviewerAccountName`, `postId`, `ShareCount`, `LikeCount`, `CommentCount`, `CommentTime`) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)"
# 构造参数元组
values = (
parse_data(task, reply['taskId']),
parse_data(task, reply['reviewerAccountId']),
parse_data(task, reply['reviewerAccountName']),
parse_data(task, reply['postId']),
parse_data(task, reply['shareCount']),
parse_data(task, reply['likeCount']),
parse_data(task, reply['commentsCount']),
parse_data(task, reply['commentTime'])
)
sqlhelper.insert(sql,values)
#判断是否是此次数据流的最后一条,最后一条直接触发用户的水军识别算法
if 'isLast'in app_data:
#获取用户相关的数据
sql = "select accountId,accountName,nickName,fansCount,likeCount,postCount,otherInfo,authentication from user_account where taskId ='{}'".format(taskId)
user_file_result = sqlhelper.queryAll(sql)
if user_file_result:
for user in user_file_result:
try:
# 获取帖子相关的数据
sql = "SELECT CONVERT(COUNT(postId), CHAR(255)) AS count, CONVERT(AVG(likeCount), CHAR(255)) AS LikeCount, CONVERT(AVG(commentsCount), CHAR(255)) AS CommentsCount, CONVERT(AVG(shareCount), CHAR(255)) AS ShareCount, CONVERT(AVG(LENGTH(content)), CHAR(255)) AS length, CONVERT(AVG((LENGTH(content) - LENGTH(REPLACE(content, '#', ''))) / LENGTH('#')), CHAR(255)) AS tags, CONVERT(AVG((LENGTH(content) - LENGTH(REPLACE(content, 'https', ''))) / LENGTH('https')), CHAR(255)) AS https, CONVERT(AVG((LENGTH(content) - LENGTH(REPLACE(content, '@', ''))) / LENGTH('@')), CHAR(255)) AS at, CONVERT(MIN(TIMESTAMPDIFF(SECOND, pubTime, GREATEST(pubTime, crawlTime))), CHAR(255)) AS diffdate FROM user_post WHERE taskId = '{taskId}' and accountId = '{accountId}'".format(taskId=taskId,accountId=user['accountId'])
post_file_result = sqlhelper.queryOne(sql)
send_task = user_tasks[user['accountId']]
predictTopic(user,post_file_result,send_task,dbConfig,taskId)
except Exception as e:
traceback.print_exc()
logging.error("用户id:{}".format(user['accountId']))
logging.error("用户缓存加载失败:{}".format(send_task))
else:
#清空用户任务缓存
user_tasks.clear()
except Exception as e:
traceback.print_exc()
else:
# 暂无任务,进入休眠
time.sleep(10)
def replyGraphThread():
'''
判断话题是否结束,如果2个小时未访问话题,则删除该话题的图信息。
:return:
'''
while True:
try:
if replyGraph!={}:
# 获取当前时间
current_time = datetime.now()
for topicID in list(replyGraph.keys()):
# 计算最后一次操作的时间与当前时间的差值
time_difference = current_time - replyGraph[topicID]['last_operation_time']
# 如果差值大于等于120分钟,则删除该话题图信息
if time_difference >= timedelta(minutes=120):
del replyGraph[topicID]
except:
logging.info(traceback.format_exc())
finally:
time.sleep(1800)